LLM Examples Introduction#
Here is a simple example to show how to use the LLM with TinyLlama.
1from tensorrt_llm import SamplingParams
2from tensorrt_llm._tensorrt_engine import LLM
3
4
5def main():
6
7 prompts = [
8 "Hello, my name is",
9 "The president of the United States is",
10 "The capital of France is",
11 "The future of AI is",
12 ]
13 sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
14
15 llm = LLM(model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
16
17 outputs = llm.generate(prompts, sampling_params)
18
19 # Print the outputs.
20 for output in outputs:
21 prompt = output.prompt
22 generated_text = output.outputs[0].text
23 print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
24
25
26# The entry point of the program need to be protected for spawning processes.
27if __name__ == '__main__':
28 main()
The LLM API can be used for both offline or online usage. See more examples of the LLM API here:
LLM API Examples
- Generate Text Using Medusa Decoding
- Generate text with multiple LoRA adapters
- Generate Text Using Eagle Decoding
- Generate Text Asynchronously
- Distributed LLM Generation
- Control generated text using logits processor
- Generate Text Using Eagle2 Decoding
- Get KV Cache Events
- Generate Text Using Lookahead Decoding
- Generation with Quantization
- Generate Text in Streaming
- Generate text with guided decoding
- Generate text
- Generate text with customization
- Automatic Parallelism with LLM
- Llm Mgmn Llm Distributed
- Llm Mgmn Trtllm Bench
- Llm Mgmn Trtllm Serve
For more details on how to fully utilize this API, check out: