Variational Quantum Eigensolver (VQE)
The Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical algorithm designed to find the ground state energy of a quantum system. It combines quantum computation with classical optimization to iteratively improve an approximation of the ground state.
Key features of VQE:
Hybrid approach: Utilizes both quantum and classical resources efficiently.
Variational method: Uses a parameterized quantum circuit (ansatz) to prepare trial states.
Iterative optimization: Classical optimizer adjusts circuit parameters to minimize energy.
Flexibility: Can be applied to various problems in quantum chemistry and materials science.
VQE Algorithm Overview:
Prepare an initial quantum state using a parameterized circuit (ansatz).
Measure the expectation value of the Hamiltonian.
Use a classical optimizer to adjust circuit parameters.
Repeat steps 1-3 until convergence or a stopping criterion is met.
CUDA-Q Solvers Implementation
CUDA-Q Solvers provides a high-level interface for running VQE simulations. Here’s how to use it in both Python and C++:
# ============================================================================ #
# Copyright (c) 2024 NVIDIA Corporation & Affiliates. #
# All rights reserved. #
# #
# This source code and the accompanying materials are made available under #
# the terms of the Apache License 2.0 which accompanies this distribution. #
# ============================================================================ #
import cudaq, cudaq_solvers as solvers
from scipy.optimize import minimize
# Create the molecular hamiltonian
geometry = [('H', (0., 0., 0.)), ('H', (0., 0., .7474))]
molecule = solvers.create_molecule(geometry,
'sto-3g',
0,
0,
casci=True)
# Get the number of qubits and electrons
numQubits = molecule.n_orbitals * 2
numElectrons = molecule.n_electrons
spin = 0
initialX = [-.2] * solvers.stateprep.get_num_uccsd_parameters(
numElectrons, numQubits)
# Define the UCCSD ansatz
@cudaq.kernel
def ansatz(thetas: list[float]):
q = cudaq.qvector(numQubits)
for i in range(numElectrons):
x(q[i])
solvers.stateprep.uccsd(q, thetas, numElectrons, spin)
# Run VQE
energy, params, all_data = solvers.vqe(ansatz,
molecule.hamiltonian,
initialX,
optimizer=minimize,
method='L-BFGS-B',
jac='3-point',
tol=1e-4,
options={'disp': True})
print(f'Final <H> = {energy}')
/*******************************************************************************
* Copyright (c) 2024 NVIDIA Corporation & Affiliates. *
* All rights reserved. *
* *
* This source code and the accompanying materials are made available under *
* the terms of the Apache License 2.0 which accompanies this distribution. *
******************************************************************************/
#include "cudaq.h"
#include "cudaq/solvers/operators.h"
#include "cudaq/solvers/stateprep/uccsd.h"
#include "cudaq/solvers/vqe.h"
// Compile and run with
// nvq++ --enable-mlir -lcudaq-solvers uccsd_vqe.cpp -o uccsd_vqe
// ./uccsd_vqe
int main() {
// Create the molecular hamiltonian
cudaq::solvers::molecular_geometry geometry{{"H", {0., 0., 0.}},
{"H", {0., 0., .7474}}};
auto molecule = cudaq::solvers::create_molecule(
geometry, "sto-3g", 0, 0, {.casci = true, .verbose = true});
// Get the spin operator
auto h = molecule.hamiltonian;
// Get the number of electrons and qubits
auto numElectrons = molecule.n_electrons;
auto numQubits = molecule.n_orbitals * 2;
// Create an initial set of parameters for the optimization
auto numParams = cudaq::solvers::stateprep::get_num_uccsd_parameters(
numElectrons, numQubits);
std::vector<double> init(numParams, -2.);
// Run VQE
auto [energy, thetas, ops] = cudaq::solvers::vqe(
[&](std::vector<double> params, std::size_t numQubits,
std::size_t numElectrons) __qpu__ {
cudaq::qvector q(numQubits);
for (auto i : cudaq::range(numElectrons))
x(q[i]);
cudaq::solvers::stateprep::uccsd(q, params, numElectrons);
},
molecule.hamiltonian, init,
[&](std::vector<double> x) {
return std::make_tuple(x, numQubits, numElectrons);
},
{{"verbose", true}});
printf("Final <H> = %.12lf\n", energy);
}
Compile and run with
nvq++ --enable-mlir -lcudaq-solvers uccsd_vqe.cpp -o uccsd_vqe
./uccsd_vqe
Code Explanation
Molecule Creation: - Both examples start by defining the molecular geometry (H2 molecule). - The
create_molecule
function generates the molecular Hamiltonian.Ansatz Definition: - The UCCSD (Unitary Coupled Cluster Singles and Doubles) ansatz is used. - In Python, it’s defined as a
cudaq.kernel
. - In C++, it’s defined as a lambda function within the VQE call.VQE Execution: - The
solvers.vqe
function (Python) orsolvers::vqe
(C++) is called. - It takes the ansatz, Hamiltonian, initial parameters, and optimization settings.Optimization: - Python uses SciPy’s
minimize
function with L-BFGS-B method. - C++ uses CUDA-Q Solvers’ built-in optimizer. - Either language can make use of CUDA-QX builtin optimizers.Results: - Both versions print the final ground state energy.
The CUDA-Q Solvers implementation of VQE provides a high-level interface that handles the quantum-classical hybrid optimization loop, making it easy to apply VQE to molecular systems. Users can focus on defining the problem (molecule and ansatz) while CUDA-Q Solvers manages the complex interaction between quantum and classical resources.