CUDA-Q QEC Python API

Code

class cudaq_qec.Code

Represents a quantum error correction code

get_observables_x(self: cudaq_qec.Code) numpy.ndarray[numpy.uint8]

Get the Pauli X observables of the code

get_observables_z(self: cudaq_qec.Code) numpy.ndarray[numpy.uint8]

Get the Pauli Z observables of the code

get_parity(self: cudaq_qec.Code) numpy.ndarray[numpy.uint8]

Get the parity check matrix of the code

get_parity_x(self: cudaq_qec.Code) numpy.ndarray[numpy.uint8]

Get the X-type parity check matrix of the code

get_parity_z(self: cudaq_qec.Code) numpy.ndarray[numpy.uint8]

Get the Z-type parity check matrix of the code

get_pauli_observables_matrix(self: cudaq_qec.Code) numpy.ndarray[numpy.uint8]

Get a matrix of the Pauli observables of the code

get_stabilizers(self: cudaq_qec.Code) list[SpinOperator]

Get the stabilizer generators of the code

Decoder Interfaces

class cudaq_qec.Decoder

Represents a decoder for quantum error correction

decode(self: cudaq_qec.Decoder, syndrome: list[float]) cudaq_qec.DecoderResult

Decode the given syndrome to determine the error correction

decode_async(self: cudaq_qec.Decoder, syndrome: list[float]) cudaq_qec.AsyncDecoderResult

Asynchronously decode the given syndrome

decode_batch(self: cudaq_qec.Decoder, syndrome: list[list[float]]) list[cudaq_qec.DecoderResult]

Decode multiple syndromes and return the results

get_block_size(self: cudaq_qec.Decoder) int

Get the size of the code block

get_syndrome_size(self: cudaq_qec.Decoder) int

Get the size of the syndrome

class cudaq_qec.DecoderResult

A class representing the results of a quantum error correction decoding operation.

This class encapsulates both the convergence status and the actual decoding result.

property converged

Boolean flag indicating if the decoder converged to a solution.

True if the decoder successfully found a valid correction chain, False if the decoder failed to converge or exceeded iteration limits.

property result

The decoded correction chain or recovery operation.

Contains the sequence of corrections that should be applied to recover the original quantum state. The format depends on the specific decoder implementation.

Built-in Decoders

NVIDIA QLDPC Decoder

class cudaq_qec.nv_qldpc_decoder

A general purpose Quantum Low-Density Parity-Check Decoder (QLDPC) decoder based on GPU accelerated belief propagation (BP). Since belief propagation is an iterative method, decoding can be improved with a second-stage post-processing step. Optionally, ordered statistics decoding (OSD) can be chosen to perform the second stage of decoding.

An [[n,k,d]] quantum error correction (QEC) code encodes k logical qubits into an n qubit data block, with a code distance d. Quantum low-density parity-check (QLDPC) codes are characterized by sparse parity-check matrices (or Tanner graphs), corresponding to a bounded number of parity checks per data qubit.

Requires a CUDA-Q compatible GPU. See the CUDA-Q GPU Compatibility List for a list of valid GPU configurations.

References: Decoding Across the Quantum LDPC Code Landscape

Note

It is required to create decoders with the get_decoder API from the CUDA-QX extension points API, such as

import cudaq_qec as qec
import numpy as np
H = np.array([[1, 0, 0, 1, 0, 1, 1],
              [0, 1, 0, 1, 1, 0, 1],
              [0, 0, 1, 0, 1, 1, 1]], dtype=np.uint8) # sample 3x7 PCM
opts = dict() # see below for options
# Note: H must be in row-major order. If you use
# `scipy.sparse.csr_matrix.todense()` to get the parity check
# matrix, you must specify todense(order='C') to get a row-major
# matrix.
nvdec = qec.get_decoder('nv-qldpc-decoder', H, **opts)
std::size_t block_size = 7;
std::size_t syndrome_size = 3;
cudaqx::tensor<uint8_t> H;

std::vector<uint8_t> H_vec = {1, 0, 0, 1, 0, 1, 1,
                              0, 1, 0, 1, 1, 0, 1,
                              0, 0, 1, 0, 1, 1, 1};
H.copy(H_vec.data(), {syndrome_size, block_size});

cudaqx::heterogeneous_map nv_custom_args;
nv_custom_args.insert("use_osd", true);
// See below for options

auto nvdec = cudaq::qec::get_decoder("nv-qldpc-decoder", H, nv_custom_args);

Note

The "nv-qldpc-decoder" implements the cudaq_qec.Decoder interface for Python and the cudaq::qec::decoder interface for C++, so it supports all the methods in those respective classes.

Parameters:
  • H – Parity check matrix (tensor format)

  • params

    Heterogeneous map of parameters:

    • use_sparsity (bool): Whether or not to use a sparse matrix solver

    • error_rate (double): Probability of an error (in 0-1 range) on a block data bit (defaults to 0.001)

    • error_rate_vec (double): Vector of length “block size” containing the probability of an error (in 0-1 range) on a block data bit (defaults to 0.001). This overrides error_rate.

    • max_iterations (int): Maximum number of BP iterations to perform (defaults to 30)

    • n_threads (int): Number of CUDA threads to use for the GPU decoder (defaults to smart selection based on parity matrix size)

    • use_osd (bool): Whether or not to use an OSD post processor if the initial BP algorithm fails to converge on a solution

    • osd_method (int): 1=OSD-0, 2=Exhaustive, 3=Combination Sweep (defaults to 1). Ignored unless use_osd is true.

    • osd_order (int): OSD postprocessor order (defaults to 0). Ref: Decoding Across the Quantum LDPC Code Landscape

      • For osd_method=2 (Exhaustive), the number of possible permutations searched after OSD-0 grows by 2^osd_order.

      • For osd_method=3 (Combination Sweep), this is the λ parameter. All weight 1 permutations and the first λ bits worth of weight 2 permutations are searched after OSD-0. This is (syndrome_length - block_size + λ * (λ - 1) / 2) additional permutations.

      • For other osd_method values, this is ignored.

    • bp_batch_size (int): Number of syndromes that will be decoded in parallel for the BP decoder (defaults to 1)

    • osd_batch_size (int): Number of syndromes that will be decoded in parallel for OSD (defaults to the number of concurrent threads supported by the hardware)

Common

cudaq_qec.sample_memory_circuit(*args, **kwargs)

Overloaded function.

  1. sample_memory_circuit(code: cudaq_qec.Code, numShots: int, numRounds: int, noise: Optional[cudaq.NoiseModel] = None) -> tuple

Sample the memory circuit of the code

  1. sample_memory_circuit(code: cudaq_qec.Code, op: cudaq_qec.operation, numShots: int, numRounds: int, noise: Optional[cudaq.NoiseModel] = None) -> tuple

Sample the memory circuit of the code with a specific initial operation

cudaq_qec.sample_code_capacity(*args, **kwargs)

Overloaded function.

  1. sample_code_capacity(code: cudaq_qec.Code, numShots: int, errorProb: float, seed: Optional[int] = None) -> tuple

Sample syndrome measurements with code capacity noise.

  1. sample_code_capacity(H: numpy.ndarray[numpy.uint8], numShots: int, errorProb: float, seed: Optional[int] = None) -> tuple

Sample syndrome measurements with code capacity noise.