CUDA-Q QEC - Quantum Error Correction Library
Overview
The cudaq-qec
library provides a comprehensive framework for quantum
error correction research and development. It leverages GPU acceleration
for efficient syndrome decoding and error correction simulations (coming soon).
Core Components
cudaq-qec
is composed of two main interfaces - the cudaq::qec::code
and
cudaq::qec::decoder
types. These types are meant to be extended by developers
to provide new error correcting codes and new decoding strategies.
QEC Code Framework cudaq::qec::code
The cudaq::qec::code
class serves as the base class for all quantum error correcting codes in CUDA-Q QEC. It provides
a flexible extension point for implementing new codes and defines the core interface that all QEC codes must support.
The core abstraction here is that of a mapping or dictionary of logical operations to their corresponding physical implementation in the error correcting code as CUDA-Q quantum kernels.
Class Structure
The code base class provides:
Operation Enumeration: Defines supported logical operations
enum class operation { x, // Logical X gate y, // Logical Y gate z, // Logical Z gate h, // Logical Hadamard gate s, // Logical S gate cx, // Logical CNOT gate cy, // Logical CY gate cz, // Logical CZ gate stabilizer_round, // Stabilizer measurement round prep0, // Prepare |0⟩ state prep1, // Prepare |1⟩ state prepp, // Prepare |+⟩ state prepm // Prepare |-⟩ state };
Patch Type: Defines the structure of a logical qubit patch
struct patch { cudaq::qview<> data; // View of data qubits cudaq::qview<> ancx; // View of X stabilizer ancilla qubits cudaq::qview<> ancz; // View of Z stabilizer ancilla qubits };
The
patch
type represents a logical qubit in quantum error correction codes. It contains: -data
: A view of the data qubits in the patch -ancx
: A view of the ancilla qubits used for X stabilizer measurements -ancz
: A view of the ancilla qubits used for Z stabilizer measurementsThis structure is designed for use within CUDA-Q kernel code and provides a convenient way to access different qubit subsets within a logical qubit patch.
Kernel Type Aliases: Defines quantum kernel signatures
using one_qubit_encoding = cudaq::qkernel<void(patch)>; using two_qubit_encoding = cudaq::qkernel<void(patch, patch)>; using stabilizer_round = cudaq::qkernel<std::vector<cudaq::measure_result>( patch, const std::vector<std::size_t>&, const std::vector<std::size_t>&)>;
Protected Members:
operation_encodings
: Maps operations to their quantum kernel implementations. The key is theoperation
enum and the value is a variant on the above kernel type aliases.m_stabilizers
: Stores the code’s stabilizer generators
Implementing a New Code
To implement a new quantum error correcting code:
Create a New Class:
class my_code : public qec::code { protected: // Implement required virtual methods public: my_code(const heterogeneous_map& options); };
Implement Required Virtual Methods:
// Number of physical data qubits std::size_t get_num_data_qubits() const override; // Total number of ancilla qubits std::size_t get_num_ancilla_qubits() const override; // Number of X-type ancilla qubits std::size_t get_num_ancilla_x_qubits() const override; // Number of Z-type ancilla qubits std::size_t get_num_ancilla_z_qubits() const override;
Define Quantum Kernels:
Create CUDA-Q kernels for each logical operation:
__qpu__ void x(patch p) { // Implement logical X } __qpu__ std::vector<cudaq::measure_result> stabilizer(patch p, const std::vector<std::size_t>& x_stabs, const std::vector<std::size_t>& z_stabs) { // Implement stabilizer measurements }
Register Operations:
In the constructor, register quantum kernels for each operation:
my_code::my_code(const heterogeneous_map& options) : code() { // Register operations operation_encodings.insert( std::make_pair(operation::x, x)); operation_encodings.insert( std::make_pair(operation::stabilizer_round, stabilizer)); // Define stabilizer generators m_stabilizers = qec::stabilizers({"XXXX", "ZZZZ"}); }
Note that in your constructor, you have access to user-provided
options
. For example, if your code depends on an integer paramter calleddistance
, you can retrieve that from the user viamy_code::my_code(const heterogeneous_map& options) : code() { // ... fill the map and stabilizers ... // Get the user-provided distance, or just // set to 3 if user did not provide one this->distance = options.get<int>("distance", /*defaultValue*/ 3); }
Register Extension Point:
Add extension point registration:
CUDAQ_EXTENSION_CUSTOM_CREATOR_FUNCTION( my_code, static std::unique_ptr<qec::code> create( const heterogeneous_map &options) { return std::make_unique<my_code>(options); } ) CUDAQ_REGISTER_TYPE(my_code)
Example: Steane Code
The Steane [[7,1,3]] code provides a complete example implementation:
Header Definition:
Declares quantum kernels for all logical operations
Defines the code class with required virtual methods
Specifies 7 data qubits and 6 ancilla qubits (3 X-type, 3 Z-type)
Implementation:
steane::steane(const heterogeneous_map &options) : code() { // Register all logical operations operation_encodings.insert( std::make_pair(operation::x, x)); // ... register other operations ... // Define stabilizer generators m_stabilizers = qec::stabilizers({ "XXXXIII", "IXXIXXI", "IIXXIXX", "ZZZZIII", "IZZIZZI", "IIZZIZZ" }); }
Quantum Kernels:
Implements fault-tolerant logical operations:
__qpu__ void x(patch logicalQubit) { // Apply logical X to specific data qubits x(logicalQubit.data[4], logicalQubit.data[5], logicalQubit.data[6]); } __qpu__ std::vector<cudaq::measure_result> stabilizer(patch logicalQubit, const std::vector<std::size_t>& x_stabilizers, const std::vector<std::size_t>& z_stabilizers) { // Measure X stabilizers h(logicalQubit.ancx); // ... apply controlled-X gates ... h(logicalQubit.ancx); // Measure Z stabilizers // ... apply controlled-X gates ... // Return measurement results return mz(logicalQubit.ancz, logicalQubit.ancx); }
Implementing a New Code in Python
CUDA-Q QEC supports implementing quantum error correction codes in Python
using the @qec.code
decorator. This provides a more accessible way
to prototype and develop new codes.
Create a New Python File:
Create a new file (e.g.,
my_steane.py
) with your code implementation:import cudaq import cudaq_qec as qec from cudaq_qec import patch
Define Quantum Kernels:
Implement the required quantum kernels using the
@cudaq.kernel
decorator:@cudaq.kernel def prep0(logicalQubit: patch): h(logicalQubit.data[0], logicalQubit.data[4], logicalQubit.data[6]) x.ctrl(logicalQubit.data[0], logicalQubit.data[1]) x.ctrl(logicalQubit.data[4], logicalQubit.data[5]) # ... additional initialization gates ... @cudaq.kernel def stabilizer(logicalQubit: patch, x_stabilizers: list[int], z_stabilizers: list[int]) -> list[bool]: # Measure X stabilizers h(logicalQubit.ancx) for xi in range(len(logicalQubit.ancx)): for di in range(len(logicalQubit.data)): if x_stabilizers[xi * len(logicalQubit.data) + di] == 1: x.ctrl(logicalQubit.ancx[xi], logicalQubit.data[di]) h(logicalQubit.ancx) # Measure Z stabilizers for zi in range(len(logicalQubit.ancx)): for di in range(len(logicalQubit.data)): if z_stabilizers[zi * len(logicalQubit.data) + di] == 1: x.ctrl(logicalQubit.data[di], logicalQubit.ancz[zi]) # Get and reset ancillas results = mz(logicalQubit.ancz, logicalQubit.ancx) reset(logicalQubit.ancx) reset(logicalQubit.ancz) return results
Implement the Code Class:
Create a class decorated with
@qec.code
that implements the required interface:@qec.code('py-steane-example') class MySteaneCodeImpl: def __init__(self, **kwargs): qec.Code.__init__(self, **kwargs) # Define stabilizer generators self.stabilizers = qec.Stabilizers([ "XXXXIII", "IXXIXXI", "IIXXIXX", "ZZZZIII", "IZZIZZI", "IIZZIZZ" ]) # Register quantum kernels self.operation_encodings = { qec.operation.prep0: prep0, qec.operation.stabilizer_round: stabilizer } def get_num_data_qubits(self): return 7 def get_num_ancilla_x_qubits(self): return 3 def get_num_ancilla_z_qubits(self): return 3 def get_num_ancilla_qubits(self): return 6
Install the Code:
Install your Python-implemented code using
cudaqx-config
:cudaqx-config --install-code my_steane.py
Using the Code:
The code can now be used like any other CUDA-Q QEC code:
import cudaq_qec as qec # Create instance of your code code = qec.get_code('py-steane-example') # Use the code for various numerical experiments
Key Points
The
@qec.code
decorator takes the name of the code as an argumentOperation encodings are registered via the
operation_encodings
dictionaryStabilizer generators are defined using the
qec.Stabilizers
classThe code must implement all required methods from the base class interface
Using the Code Framework
To use an implemented code:
# Create a code instance
code = qec.get_code("steane")
# Access stabilizer information
stabilizers = code.get_stabilizers()
parity = code.get_parity()
# The code can now be used for various numerical
# experiments - see section below.
// Create a code instance
auto code = cudaq::qec::get_code("steane");
// Access stabilizer information
auto stabilizers = code->get_stabilizers();
auto parity = code->get_parity();
// The code can now be used for various numerical
// experiments - see section below.
Pre-built Quantum Error Correction Codes
CUDA-Q QEC provides several well-studied quantum error correction codes out of the box. Here’s a detailed overview of each:
Steane Code
The Steane code is a [[7,1,3]]
CSS (Calderbank-Shor-Steane) code that encodes
one logical qubit into seven physical qubits with a code distance of 3.
Key Properties:
Data qubits: 7
Encoded qubits: 1
Code distance: 3
Ancilla qubits: 6 (3 for X stabilizers, 3 for Z stabilizers)
Stabilizer Generators:
X-type:
["XXXXIII", "IXXIXXI", "IIXXIXX"]
Z-type:
["ZZZZIII", "IZZIZZI", "IIZZIZZ"]
The Steane code can correct any single-qubit error and detect up to two errors. It is particularly notable for being the smallest CSS code that can implement a universal set of transversal gates.
Usage:
import cudaq_qec as qec
# Create Steane code instance
steane = qec.get_code("steane")
auto steane = cudaq::qec::get_code("steane");
Repetition Code
The repetition code is a simple [[n,1,n]] code that protects against bit-flip (X) errors by encoding one logical qubit into n physical qubits, where n is the code distance.
Key Properties:
Data qubits: n (distance)
Encoded qubits: 1
Code distance: n
Ancilla qubits: n-1 (all for Z stabilizers)
Stabilizer Generators:
For distance 3:
["ZZI", "IZZ"]
For distance 5:
["ZZIII", "IZZII", "IIZZI", "IIIZZ"]
The repetition code is primarily educational as it can only correct X errors. However, it serves as an excellent introduction to QEC concepts.
Usage:
import cudaq_qec as qec
# Create distance-3 repetition code
code = qec.get_code('repetition', distance=3})
# Access stabilizers
stabilizers = code.get_stabilizers() # Returns ["ZZI", "IZZ"]
auto code = qec::get_code("repetition", {{"distance", 3}});
// Access stabilizers
auto stabilizers = code->get_stabilizers();
Decoder Framework cudaq::qec::decoder
The CUDA-Q QEC decoder framework provides an extensible system for implementing
quantum error correction decoders through the cudaq::qec::decoder
base class.
Class Structure
The decoder base class defines the core interface for syndrome decoding:
class decoder {
protected:
std::size_t block_size; // For [n,k] code, this is n
std::size_t syndrome_size; // For [n,k] code, this is n-k
tensor<uint8_t> H; // Parity check matrix
public:
struct decoder_result {
bool converged; // Decoder convergence status
std::vector<float_t> result; // Soft error probabilities
};
virtual decoder_result decode(
const std::vector<float_t>& syndrome) = 0;
virtual std::vector<decoder_result> decode_multi(
const std::vector<std::vector<float_t>>& syndrome);
};
Key Components:
Parity Check Matrix: Defines the code structure via
H
Block Size: Number of physical qubits in the code
Syndrome Size: Number of stabilizer measurements
Decoder Result: Contains convergence status and error probabilities
Multiple Decoding Modes: Single syndrome or batch processing
Implementing a New Decoder in C++
To implement a new decoder:
Create Decoder Class:
class my_decoder : public qec::decoder {
private:
// Decoder-specific members
public:
my_decoder(const tensor<uint8_t>& H,
const heterogeneous_map& params)
: decoder(H) {
// Initialize decoder
}
decoder_result decode(
const std::vector<float_t>& syndrome) override {
// Implement decoding logic
}
};
Register Extension Point:
CUDAQ_EXTENSION_CUSTOM_CREATOR_FUNCTION(
my_decoder,
static std::unique_ptr<decoder> create(
const tensor<uint8_t>& H,
const heterogeneous_map& params) {
return std::make_unique<my_decoder>(H, params);
}
)
CUDAQ_REGISTER_TYPE(my_decoder)
Example: Lookup Table Decoder
Here’s a simple lookup table decoder for the Steane code:
class single_error_lut : public decoder {
private:
std::map<std::string, std::size_t> single_qubit_err_signatures;
public:
single_error_lut(const tensor<uint8_t>& H,
const heterogeneous_map& params)
: decoder(H) {
// Build lookup table for single-qubit errors
for (std::size_t qErr = 0; qErr < block_size; qErr++) {
std::string err_sig(syndrome_size, '0');
for (std::size_t r = 0; r < syndrome_size; r++) {
bool syndrome = 0;
for (std::size_t c = 0; c < block_size; c++)
syndrome ^= (c != qErr) && H.at({r, c});
err_sig[r] = syndrome ? '1' : '0';
}
single_qubit_err_signatures.insert({err_sig, qErr});
}
}
decoder_result decode(
const std::vector<float_t>& syndrome) override {
decoder_result result{false,
std::vector<float_t>(block_size, 0.0)};
// Convert syndrome to string
std::string syndrome_str(syndrome_size, '0');
for (std::size_t i = 0; i < syndrome_size; i++)
syndrome_str[i] = (syndrome[i] >= 0.5) ? '1' : '0';
// Lookup error location
auto it = single_qubit_err_signatures.find(syndrome_str);
if (it != single_qubit_err_signatures.end()) {
result.converged = true;
result.result[it->second] = 1.0;
}
return result;
}
};
Implementing a Decoder in Python
CUDA-Q QEC supports implementing decoders in Python using the @qec.decoder
decorator:
Create Decoder Class:
@qec.decoder("my_decoder")
class MyDecoder:
def __init__(self, H, **kwargs):
qec.Decoder.__init__(self, H)
self.H = H
# Initialize with optional kwargs
def decode(self, syndrome):
# Create result object
result = qec.DecoderResult()
# Implement decoding logic
# ...
# Set results
result.converged = True
result.result = [0.0] * self.block_size
return result
Using Custom Parameters:
# Create decoder with custom parameters
decoder = qec.get_decoder("my_decoder",
H=parity_check_matrix,
custom_param=42)
Key Features
Soft Decision Decoding: Results are probabilities in [0,1]
Batch Processing: Support for decoding multiple syndromes
Asynchronous Decoding: Optional async interface for parallel processing
Custom Parameters: Flexible configuration via heterogeneous_map
Python Integration: First-class support for Python implementations
Usage Example
import cudaq_qec as qec
# Get a code instance
code = qec.get_code('steane')
# Create decoder with code's parity matrix
decoder = qec.get_decoder('single_error_lut',
H=code.get_parity())
# Run stabilizer measurements
syndromes, dataQubitResults = qec.sample_memory_circuit(steane, numShots, numRounds)
# Decode syndrome
result = decoder.decode(syndromes[0])
if result.converged:
print("Error locations:",
[i for i,p in enumerate(result.result) if p > 0.5])
using namespace cudaq;
// Get a code instance
auto code = qec::get_code("steane");
// Create decoder with code's parity matrix
auto decoder = qec::get_decoder("single_error_lut",
code->get_parity());
// Run stabilizer measurements
auto [syndromes, dataQubitResults] = qec::sample_memory_circuit(*code, /*numShots*/numShots, /*numRounds*/ 1);
// Decode syndrome
auto result = decoder->decode(syndromes[0]);
Numerical Experiments
CUDA-Q QEC provides utilities for running numerical experiments with quantum error correction codes.
Conventions
To address vectors of qubits (cudaq::qvector
), CUDAQ indexing starts from 0, and 0 corresponds
to the leftmost position when working with pauli strings (cudaq::spin_op
). For example, applying a pauli X operator
to qubit 1 out of 7 would be X_1 = IXIIIII
.
While implementing your own codes and decoders, you are free to follow any convention that is convenient to you. However,
to interact with the pre-built QEC codes and decoders within this library, the following conventions are used. All of these codes
are CSS codes, and so we separate \(X\)-type and \(Z\)-type errors. For example, an error vector for 3 qubits will
have 6 entries, 3 bits representing the presence of a bit-flip on each qubit, and 3 bits representing a phase-flip on each qubit.
An error vector representing a bit-flip on qubit 0, and a phase-flip on qubit 1 would look like E = 100010
. This means that this
error vector is just two error vectors (E_X, E_Z
) concatenated together (E = E_X | E_Z
).
These errors are detected by stabilizers. \(Z\)-stabilizers detect \(X\)-type errors and vice versa. Thus we write our CSS parity check matrices as
so that when we generate a syndrome vector by multiplying the parity check matrix by an error vector we get
This means that for the concatenated syndrome vector S = S_X | S_Z
, the first part, S_X
, are syndrome bits triggered by Z
stabilizers detecting X
errors. This is because the Z
stabilizers like ZZI
and IZZ
anti-commute with X
errors like
IXI
.
The decoder prediction as to what error happened is D = D_X | D_Z
. A successful error decoding does not require that D = E
,
but that D + E
is not a logical operator. There are a couple ways to check this.
For bitflip errors, we check that the residual error R = D_X + E_X
is not L_X
. Since X
anticommutes
with Z
, we can check that L_Z(D_X + E_X) = 0
. This is because we just need to check if they have mutual support on an even
or odd number of qubits. We could also check that R
is not a stabilizer.
Similar to the parity check matrix, the logical obvervables are also stored in a matrix as
so that when determining logical errors, we can do matrix multiplication
Here we’re using P
as this can be stored in a Pauli frame tracker to track observable flips.
Each logical qubit has logical observables associated with it. Depending on what basis the data qubits are measured in, either the
X
or Z
logical observables can be measured. The data qubits which support the logical observable is contained the qec::code
class as well.
To do a logical Z(X)
measurement, measure out all of the data qubits in the Z(X)
basis. Then check support on the appropriate
Z(x)
observable.
Memory Circuit Experiments
Memory circuit experiments test a QEC code’s ability to preserve quantum information over time by:
Preparing an initial logical state
Performing multiple rounds of stabilizer measurements
Measuring data qubits to verify state preservation
Optionally applying noise during the process
Function Variants
import cudaq_qec as qec
# Basic memory circuit with |0⟩ state
syndromes, measurements = qec.sample_memory_circuit(
code, # QEC code instance
numShots=1000, # Number of circuit executions
numRounds=1 # Number of stabilizer rounds
)
# Memory circuit with custom initial state
syndromes, measurements = qec.sample_memory_circuit(
code, # QEC code instance
state_prep=qec.operation.prep1, # Initial state
numShots=1000, # Number of shots
numRounds=1 # Number of rounds
)
# Memory circuit with noise model
noise = cudaq.noise_model()
noise.add_channel(...) # Configure noise
syndromes, measurements = qec.sample_memory_circuit(
code, # QEC code instance
numShots=1000, # Number of shots
numRounds=1, # Number of rounds
noise=noise # Noise model
)
// Basic memory circuit with |0⟩ state
auto [syndromes, measurements] = qec::sample_memory_circuit(
code, // QEC code instance
numShots, // Number of circuit executions
numRounds // Number of stabilizer rounds
);
// Memory circuit with custom initial state
auto [syndromes, measurements] = qec::sample_memory_circuit(
code, // QEC code instance
operation::prep1, // Initial state preparation
numShots, // Number of circuit executions
numRounds // Number of stabilizer rounds
);
// Memory circuit with noise model
auto noise_model = cudaq::noise_model();
noise_model.add_channel(...); // Configure noise
auto [syndromes, measurements] = qec::sample_memory_circuit(
code, // QEC code instance
numShots, // Number of circuit executions
numRounds, // Number of stabilizer rounds
noise_model // Noise model to apply
);
Return Values
The functions return a tuple containing:
Syndrome Measurements (
tensor<uint8_t>
):Shape:
(num_shots, (num_rounds-1) * syndrome_size)
Contains stabilizer measurement results
Values are 0 or 1 representing measurement outcomes
Data Measurements (
tensor<uint8_t>
):Shape:
(num_shots, block_size)
Contains final data qubit measurements
Used to verify logical state preservation
Example Usage
Here’s a complete example of running a memory experiment:
import cudaq
import cudaq_qec as qec
# Create code and decoder
code = qec.get_code('steane')
decoder = qec.get_decoder('single_error_lut',
code.get_parity())
# Configure noise
noise = cudaq.noise_model()
noise.add_channel('x', depolarizing=0.001)
# Run memory experiment
syndromes, measurements = qec.sample_memory_circuit(
code,
state_prep=qec.operation.prep0,
num_shots=1000,
num_rounds=10,
noise=noise
)
# Analyze results
for shot in range(1000):
# Get syndrome for this shot
syndrome = syndromes[shot].tolist()
# Decode syndrome
result = decoder.decode(syndrome)
if result.converged:
# Process correction
pass
// Top of file
#include "cudaq/qec/experiments.h"
// Create a Steane code instance
auto code = cudaq::qec::get_code("steane");
// Configure noise model
auto noise = cudaq::noise_model();
noise.add_all_qubit_channel("x", cudaq::qec::two_qubit_depolarization(0.1),
/*num_controls=*/1);
// Run memory experiment
auto [syndromes, measurements] = qec::sample_memory_circuit(
code, // Code instance
operation::prep0, // Prepare |0⟩ state
1000, // 1000 shots
10, // 10 rounds
noise // Apply noise
);
// Analyze results
auto decoder = qec::get_decoder("single_error_lut", code->get_parity());
for (std::size_t shot = 0; shot < 1000; shot++) {
// Get syndrome for this shot
std::vector<float> syndrome(code->get_syndrome_size());
for (std::size_t i = 0; i < syndrome.size(); i++)
syndrome[i] = syndromes.at({shot, i});
// Decode syndrome
auto result = decoder->decode(syndrome);
// Process correction
// ...
}
Additional Noise Models:
noise = cudaq.NoiseModel()
# Add multiple error channels
noise.add_all_qubit_channel('h', cudaq.BitFlipChannel(0.001))
# Specify two qubit errors
noise.add_all_qubit_channel("x", qec.TwoQubitDepolarization(p), 1)
cudaq::noise_model noise;
# Add multiple error channels
noise.add_all_qubit_channel(
"x", cudaq::BitFlipChannel(/*probability*/ 0.01));
# Specify two qubit errors
noise.add_all_qubit_channel(
"x", cudaq::qec::two_qubit_depolarization(/*probability*/ 0.01),
/*numControls*/ 1);