Installation Guide

Installation Methods

CUDA-QX provides multiple installation methods to suit your needs:

pip install

The simplest way to install CUDA-QX is via pip. You can install individual components:

# Install QEC library
pip install cudaq-qec

# Install Solvers library
pip install cudaq-solvers

# Install both libraries
pip install cudaq-qec cudaq-solvers

Docker Container

CUDA-QX is available as a Docker container with all dependencies pre-installed:

  1. Pull the container:

docker pull ghcr.io/nvidia/cudaqx
  1. Run the container:

docker run --gpus all -it ghcr.io/nvidia/cudaqx
The container includes:
  • CUDA-Q compiler and runtime

  • CUDA-QX libraries (QEC and Solvers)

  • All required dependencies

  • Example notebooks and tutorials

Building from Source

Prerequisites

Before building CUDA-QX from source, ensure your system meets the following requirements:

  • CUDA-Q: The NVIDIA quantum-classical programming model

  • CMake: Version 3.28 or higher (pip install cmake>=3.28)

  • GCC: Version 11 or higher

  • Python: Version 3.10, 3.11, or 3.12

  • NVIDIA GPU: CUDA-capable GPU with compute capability 12.0 or higher

  • Git: For cloning the repository

Build Instructions

  1. Clone the repository:

git clone https://github.com/nvidia/cudaqx
cd cudaqx
  1. Create and enter build directory:

mkdir build && cd build
  1. Configure with CMake:

cmake .. -G Ninja \
    -DCUDAQX_ENABLE_LIBS="all" \
    -DCUDAQX_INCLUDE_TESTS=ON \
    -DCUDAQX_BINDINGS_PYTHON=ON \
    -DCUDAQ_DIR=$HOME/.cudaq/lib/cmake/cudaq \
    -DCMAKE_CXX_FLAGS="-Wno-attributes" \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_INSTALL_PREFIX=$HOME/.cudaqx
  1. Build and install:

ninja install

CMake Build Options

  • CUDAQX_ENABLE_LIBS: Specify which libraries to build (all, qec, solvers)

  • CUDAQX_INCLUDE_TESTS: Enable building of tests

  • CUDAQX_BINDINGS_PYTHON: Enable Python bindings

  • CUDAQ_DIR: Path to CUDA-Q installation

  • CMAKE_INSTALL_PREFIX: Installation directory

Verifying Installation

To verify your installation, run the following Python code:

import cudaq_qec as qec
import cudaq_solvers as solvers

Troubleshooting (Common Issues)

  1. CMake configuration fails:
    • Ensure CUDA-Q is properly installed

    • Verify CMake version (cmake --version)

    • Check GCC version (gcc --version)

  2. CUDA device not found:
    • Verify NVIDIA driver installation

    • Check CUDA toolkit installation

    • Ensure GPU compute capability is supported

  3. Python bindings not found:
    • Confirm CUDAQX_BINDINGS_PYTHON=ON during build

    • Check Python environment activation

    • Verify installation path is in PYTHONPATH

For additional support, please visit our GitHub Issues page.