Source code for tensorrt_llm.layers.attention

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional

import numpy as np
import tensorrt as trt
import torch

from .._common import default_net, precision
from .._utils import (fp32_array, int32_array, is_same_dtype, trt_dtype_to_np,
                      trt_dtype_to_str)
from ..functional import (ACT2FN, AllReduceFusionParams, AttentionMaskType,
                          Conditional, LayerNormType, PositionEmbeddingType,
                          RopeEmbeddingUtils, RotaryScalingType, Tensor,
                          allgather, arange, bert_attention, cast, clip, concat,
                          constant, embedding, expand, expand_dims, expand_mask,
                          generate_alibi_biases, generate_alibi_slopes,
                          gpt_attention, gt, matmul)
from ..functional import max as fmax
from ..functional import (minimum, repeat_interleave, shape, slice, softmax,
                          split, unsqueeze, where)
from ..module import Module
from ..parameter import Parameter
from ..quantization import QuantMode
from ..quantization.functional import dequantize, quantize
from .linear import ColumnLinear, RowLinear
from .lora import LoraRuntimeParams
from .normalization import GroupNorm, LayerNorm, RmsNorm

from ..functional import maximum  # isort:skip

layernorm_map = {
    LayerNormType.LayerNorm: LayerNorm,
    LayerNormType.RmsNorm: RmsNorm,
    LayerNormType.GroupNorm: GroupNorm,
}


[docs] def make_causal_mask(bsz, tgt_len, past_key_values_length, dtype): _range = arange(start=constant(int32_array(0)), end=tgt_len, dtype=trt_dtype_to_str(dtype)) mask = repeat_interleave(_range, tgt_len, 0).view(concat([tgt_len, tgt_len])) mask = where(mask < mask.transpose(-1, -2), 1.0, 0.0) zero = constant(fp32_array(0)) zero = expand_dims(zero, [0, 1]) zero = expand(zero, concat([tgt_len, past_key_values_length])) mask = concat([zero, mask], dim=1) mask *= np.finfo(trt_dtype_to_np(dtype)).min.item() mask = mask.view(concat([1, 1, tgt_len, tgt_len + past_key_values_length])) mask = expand(mask, concat([bsz, 1, tgt_len, tgt_len + past_key_values_length])) return mask
[docs] def compute_relative_bias(query_length, key_length, num_buckets, max_distance, bidirectional, rel_attn_table, tp_size=1, tp_group=None, tp_rank=None): def make_relative_position_bucket(relative_position, bidirectional, num_buckets, max_distance): relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += where(relative_position > 0, num_buckets, 0) relative_position = relative_position.abs() else: relative_position = 0 - minimum(relative_position, 0) max_exact = num_buckets // 2 is_small = relative_position < max_exact max_exact_fp = constant(fp32_array(max_exact)) tmp = cast(relative_position, "float32") / max_exact_fp tmp = tmp.log() const1 = math.log(max_distance / max_exact) const2 = constant(fp32_array(num_buckets - max_exact)) relative_position_if_large = tmp / const1 * const2 relative_position_if_large = cast(relative_position_if_large, "int32") relative_position_if_large = max_exact + relative_position_if_large relative_position_if_large = minimum(relative_position_if_large, num_buckets - 1) relative_buckets += where(is_small, relative_position, relative_position_if_large) return relative_buckets context_position = arange(start=constant(int32_array(0)), end=query_length, dtype=trt_dtype_to_str(trt.int32)) context_position = unsqueeze(context_position, -1) memory_position = arange(start=constant(int32_array(0)), end=key_length, dtype=trt_dtype_to_str(trt.int32)) memory_position = unsqueeze(memory_position, 0) relative_position = memory_position - context_position relative_position_bucket = make_relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional, num_buckets, max_distance, ) # shape (query_length, key_length, num_heads) values = embedding(relative_position_bucket, rel_attn_table, tp_size=tp_size, tp_group=tp_group, tp_rank=tp_rank) # shape (1, num_heads, query_length, key_length) values = unsqueeze(values.permute([2, 0, 1]), 0) return values
[docs] class AttentionMaskParams(object): def __init__(self, self_attention_mask: Tensor = None, self_attention_packed_mask: Tensor = None, cross_attention_mask: Tensor = None, cross_attention_packed_mask: Tensor = None): self.self_attention_mask = self_attention_mask self.self_attention_packed_mask = self_attention_packed_mask self.cross_attention_mask = cross_attention_mask self.cross_attention_packed_mask = cross_attention_packed_mask
[docs] class AttentionParams(object): def __init__(self, sequence_length: Tensor = None, context_lengths: Tensor = None, host_context_lengths: Tensor = None, max_context_length: int = None, host_request_types: Tensor = None, encoder_input_lengths: Tensor = None, encoder_max_input_length: Tensor = None, host_runtime_perf_knobs: Tensor = None, host_context_progress: Tensor = None): self.sequence_length = sequence_length self.context_lengths = context_lengths self.host_context_lengths = host_context_lengths # max allowed context length. Required to # compute scratch memory size. self.max_context_length = max_context_length self.host_request_types = host_request_types self.encoder_input_lengths = encoder_input_lengths self.encoder_max_input_length = encoder_max_input_length self.host_runtime_perf_knobs = host_runtime_perf_knobs self.host_context_progress = host_context_progress # const parameters that will be reused by all layers. self.embed_positions = None self.rotary_inv_freq = None self.embed_positions_for_gpt_attention = None self.embed_positions_short_factors = None self.embed_positions_long_factors = None self.embed_positions_short_factors_for_attention_plugin = None self.embed_positions_long_factors_for_attention_plugin = None self.short_mscale = 1.0 self.long_mscale = 1.0 self.short_inv_freq = None self.long_inv_freq = None
[docs] def fill_attention_const_params_for_rope( self, embed_positions: Tensor = None, rotary_inv_freq: Tensor = None, embed_positions_for_gpt_attention: Tensor = None): self.embed_positions = embed_positions self.rotary_inv_freq = rotary_inv_freq self.embed_positions_for_gpt_attention = embed_positions_for_gpt_attention return self
[docs] def fill_attention_const_params_for_long_rope( self, embed_positions_short_factors, embed_positions_long_factors, embed_positions_short_factors_for_attention_plugin, embed_positions_long_factors_for_attention_plugin, short_mscale, long_mscale, short_inv_freq, long_inv_freq): self.embed_positions_short_factors = embed_positions_short_factors self.embed_positions_long_factors = embed_positions_long_factors self.embed_positions_short_factors_for_attention_plugin = embed_positions_short_factors_for_attention_plugin self.embed_positions_long_factors_for_attention_plugin = embed_positions_long_factors_for_attention_plugin self.short_mscale = short_mscale self.long_mscale = long_mscale self.short_inv_freq = short_inv_freq self.long_inv_freq = long_inv_freq return self
[docs] def is_valid_cross_attn(self, do_cross_attention): if do_cross_attention: if self.encoder_input_lengths is None: return False if self.encoder_max_input_length is None: return False return True
[docs] def is_valid(self, gpt_attention_plugin, remove_input_padding, use_kv_cache): if gpt_attention_plugin: if use_kv_cache and self.sequence_length is None: return False if self.context_lengths is None: return False if self.host_request_types is None: return False if self.max_context_length is None: return False if self.host_runtime_perf_knobs is None: return False if self.host_context_progress is None: return False if remove_input_padding: if self.host_context_lengths is None: return False if not gpt_attention_plugin: return False return True
[docs] class SpecDecodingParams: def __init__(self, spec_decoding_is_generation_length_variable: bool = False, spec_decoding_max_generation_length: int = 1, spec_decoding_generation_lengths: Tensor = None, spec_decoding_position_offsets: Tensor = None, spec_decoding_packed_mask: Tensor = None): self.spec_decoding_is_generation_length_variable = spec_decoding_is_generation_length_variable self.spec_decoding_max_generation_length = spec_decoding_max_generation_length self.spec_decoding_generation_lengths = spec_decoding_generation_lengths self.spec_decoding_position_offsets = spec_decoding_position_offsets self.spec_decoding_packed_mask = spec_decoding_packed_mask
[docs] class KeyValueCacheParams: def __init__(self, past_key_value: List[Tensor] = None, host_past_key_value_lengths: Tensor = None, host_max_attention_window_sizes: Tensor = None, host_sink_token_length: Tensor = None, kv_cache_block_offsets: Tensor = None, host_kv_cache_block_offsets: Tensor = None, host_kv_cache_pool_pointers: Tensor = None, host_kv_cache_pool_mapping: Tensor = None, cache_indirection: Tensor = None, past_key_value_length: Tensor = None, cross_kv_cache_block_offsets: Tensor = None, host_cross_kv_cache_block_offsets: Tensor = None, host_cross_kv_cache_pool_pointers: Tensor = None, host_cross_kv_cache_pool_mapping: Tensor = None): self.past_key_value = past_key_value self.host_past_key_value_lengths = host_past_key_value_lengths self.host_max_attention_window_sizes = host_max_attention_window_sizes self.host_sink_token_length = host_sink_token_length self.kv_cache_block_offsets = kv_cache_block_offsets self.host_kv_cache_block_offsets = host_kv_cache_block_offsets self.host_kv_cache_pool_pointers = host_kv_cache_pool_pointers self.host_kv_cache_pool_mapping = host_kv_cache_pool_mapping self.cross_kv_cache_block_offsets = cross_kv_cache_block_offsets self.host_cross_kv_cache_block_offsets = host_cross_kv_cache_block_offsets self.host_cross_kv_cache_pool_pointers = host_cross_kv_cache_pool_pointers self.host_cross_kv_cache_pool_mapping = host_cross_kv_cache_pool_mapping self.cache_indirection = cache_indirection # self.past_key_value_length = past_key_value_length
[docs] def get_first_past_key_value(self): if self.past_key_value is None: return None return self.past_key_value[0]
[docs] def fill_none_tensor_list(self, list_size): if self.past_key_value is None: self.past_key_value = tuple([None] * list_size)
[docs] def is_valid(self, gpt_attention_plugin): if gpt_attention_plugin: if self.host_past_key_value_lengths is None: return False if self.host_max_attention_window_sizes is None: return False if self.host_sink_token_length is None: return False if self.cache_indirection is None: return False return True
[docs] class BlockSparseAttnParams: def __init__(self, block_size: int = 64, homo_head_pattern: bool = False, num_local_blocks: int = 16, vertical_stride: int = 8): self.block_size = block_size self.homo_head_pattern = homo_head_pattern self.num_local_blocks = num_local_blocks self.vertical_stride = vertical_stride
[docs] class Attention(Module): def __init__(self, *, local_layer_idx, hidden_size, num_attention_heads, num_kv_heads=None, max_position_embeddings=1024, num_layers=1, apply_query_key_layer_scaling=False, attention_head_size=None, qk_layernorm=False, layernorm_type=LayerNormType.LayerNorm, layernorm_share=True, inner_layernorm=False, eps=1e-05, attention_mask_type=AttentionMaskType.padding, bias=True, dtype=None, position_embedding_type=PositionEmbeddingType.learned_absolute, rotary_embedding_base=10000.0, rotary_embedding_scaling=None, rotary_embedding_percentage=1.0, rope_scaling_short_factors=None, rope_scaling_long_factors=None, rope_scaling_short_mscale=None, rope_scaling_long_mscale=None, original_max_position_embeddings=1024, tp_group=None, tp_size=1, tp_rank=0, quant_mode: QuantMode = QuantMode(0), q_scaling=1.0, cross_attention=False, relative_attention=False, max_distance=0, num_buckets=0, dense_bias=None, clip_qkv=None, alibi_bias_max=8, skip_cross_kv=False, max_attn_value=0.0, block_sparse_params=None, use_implicit_relative_attention=False, reorder=False, layer_idx_in_cache_pool=None): super().__init__() self.local_layer_idx = local_layer_idx self.cross_attention = cross_attention self.attention_mask_type = attention_mask_type self.attention_head_size = hidden_size // num_attention_heads if attention_head_size is None else attention_head_size self.num_kv_heads = num_kv_heads self.layer_idx_in_cache_pool = layer_idx_in_cache_pool if layer_idx_in_cache_pool is not None else local_layer_idx assert num_attention_heads % tp_size == 0, \ "num_attention_heads must be divisible by tp_size" self.num_attention_heads = num_attention_heads // tp_size self.num_attention_kv_heads = ( num_kv_heads + tp_size - 1 ) // tp_size if num_kv_heads is not None else self.num_attention_heads self.hidden_size = hidden_size self.attention_hidden_size = self.attention_head_size * self.num_attention_heads self.max_position_embeddings = max_position_embeddings self.original_max_position_embeddings = original_max_position_embeddings self.bias = bias self.tp_group = tp_group self.tp_size = tp_size self.tp_rank = tp_rank self.dtype = dtype self.dense_bias = dense_bias if dense_bias is None: self.dense_bias = bias self.num_layers = num_layers self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.norm_factor = math.sqrt(self.attention_head_size) self.q_scaling = q_scaling if self.apply_query_key_layer_scaling: self.norm_factor *= self.num_layers self.q_scaling *= self.num_layers # Whether to scale ALiBi bias. Mathematically, it's equivalent to # normalizing QK after adding bias. # - False, inv_sqrt_Dh * Q*K^T + alibi_bias # - True, inv_sqrt_Dh * Q*K^T + inv_sqrt_Dh * alibi_bias self.scale_alibi_bias = position_embedding_type == PositionEmbeddingType.alibi_with_scale self.alibi_bias_max = alibi_bias_max self.position_embedding_type = position_embedding_type self.relative_attention = relative_attention self.max_distance = max_distance self.num_buckets = num_buckets self.rotary_embedding_base = rotary_embedding_base self.rotary_embedding_scaling = rotary_embedding_scaling self.rotary_embedding_scale_type = RotaryScalingType.none self.rotary_embedding_scale = 1.0 self.short_mscale = 1.0 self.long_mscale = 1.0 self.rotary_embedding_percentage = rotary_embedding_percentage self.use_implicit_relative_attention = self.relative_attention and use_implicit_relative_attention if rotary_embedding_scaling is not None: rotary_scaling_type = rotary_embedding_scaling.get( "type", rotary_embedding_scaling.get("rope_type")) self.rotary_embedding_scale_type = RotaryScalingType.from_string( rotary_scaling_type) self.rotary_embedding_scale = rotary_embedding_scaling.get( "factor", 1.0) self.rotary_embedding_dim = 0 if self.position_embedding_type.is_rope(): self.rotary_embedding_dim = int(self.attention_head_size * rotary_embedding_percentage) elif self.position_embedding_type.is_alibi(): alibi_scale = 1. / self.norm_factor if self.scale_alibi_bias else 1. alibi_slopes = generate_alibi_slopes( self.num_attention_heads * self.tp_size, tp_size=self.tp_size, tp_rank=self.tp_rank, alibi_scale=alibi_scale, alibi_bias_max=self.alibi_bias_max) self.register_parameter( 'alibi_slopes', Parameter(alibi_slopes, dtype='float32', is_buffer=True)) self.quant_mode = quant_mode self.max_attn_value = max_attn_value self.register_parameter('kv_cache_scaling_factor', None) self.register_parameter('attention_output_orig_quant_scale', None) self.block_sparse_params = block_sparse_params if block_sparse_params is not None else BlockSparseAttnParams( ) # The output feature size is therefore (h/tp + 2*kvh/tp) * d, where h is num_heads, # d is head_size, kvh is the num_kv_heads and tp is tensor_parallel_size. # In ColumnLinear op, the output dim is calculated by (h + 2*kvh) * d / tp, # which matches the desired output size (h/tp + 2*kvh/tp) * d after splitting # out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size # example: d_model != num_heads * head_size in Flan-T5/ByT5/Gemma self.qkv = ColumnLinear( hidden_size, tp_size * self.num_attention_heads * self.attention_head_size + (2 * tp_size * self.num_attention_kv_heads * self.attention_head_size), bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False, is_qkv=True) self.dense = RowLinear(tp_size * self.num_attention_heads * self.attention_head_size, hidden_size, bias=self.dense_bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size) # see optimize_model's add_lora for LoRA initialization self.qkv_lora = None # per-layer relative attention table if self.use_implicit_relative_attention: self.rel_attn_table = Parameter(shape=(num_attention_heads // tp_size, num_buckets), dtype=dtype) # qk layernorm self.qk_layernorm = qk_layernorm self.layernorm_type = layernorm_type self.layernorm_share = layernorm_share ln_type = layernorm_map[layernorm_type] if self.qk_layernorm: # layernorm_share indicates whether all the QK head in one layer shares the same norm parameters or not if layernorm_share: self.q_layernorm = ln_type(self.attention_head_size, eps=eps, dtype=dtype) self.k_layernorm = ln_type(self.attention_head_size, eps=eps, dtype=dtype) else: assert ln_type == LayerNorm self.q_layernorm = ln_type( (self.num_attention_heads, self.attention_head_size), eps=eps, dtype=dtype, bias=False, tp_size=tp_size, tp_dim=0) self.k_layernorm = ln_type( (self.num_attention_kv_heads, self.attention_head_size), eps=eps, dtype=dtype, bias=False, tp_size=tp_size, tp_dim=0) self.inner_layernorm = ln_type(self.hidden_size, dtype=dtype, eps=eps) if inner_layernorm else None if clip_qkv is not None: self.clip_qkv = fp32_array([clip_qkv]) else: self.clip_qkv = None self.skip_cross_kv = skip_cross_kv
[docs] @staticmethod def create_attention_const_params(model_cls, config): # get rotary parameters. hidden_size = config.hidden_size num_attention_heads = config.num_attention_heads attention_head_size = config.head_size max_position_embeddings = config.max_position_embeddings position_embedding_type = config.position_embedding_type rotary_embedding_base = getattr(config, 'rotary_base', 10000.0) rotary_embedding_scaling = getattr(config, 'rotary_scaling', None) rotary_embedding_percentage = getattr(config, 'rotary_pct', 1.0) # only rope need the const parameters. if not position_embedding_type.is_rope(): return # attention head size attention_head_size = hidden_size // num_attention_heads if attention_head_size is None else attention_head_size # rotary embedding dim. rotary_embedding_dim = getattr( config, 'rotary_dim', int(attention_head_size * rotary_embedding_percentage)) # rotary scaling. rotary_embedding_scale_type = RotaryScalingType.none rotary_embedding_scale = 1.0 if rotary_embedding_scaling is not None: rotary_scaling_type = rotary_embedding_scaling.get( "type", rotary_embedding_scaling.get("rope_type")) rotary_embedding_scale_type = RotaryScalingType.from_string( rotary_scaling_type) rotary_embedding_scale = rotary_embedding_scaling.get("factor", 1.0) if position_embedding_type == PositionEmbeddingType.long_rope: rope_scaling_short_factors, rope_scaling_long_factors = None, None rope_scaling_short_mscale, rope_scaling_long_mscale = None, None original_max_position_embeddings = max_position_embeddings if hasattr(config, "longrope_scaling_short_factors"): rope_scaling_short_factors = np.asarray( config.longrope_scaling_short_factors).astype(np.float32) rope_scaling_long_factors = np.asarray( config.longrope_scaling_long_factors).astype(np.float32) original_max_position_embeddings = config.original_max_position_embeddings if config.architecture == "Phi3SmallForCausalLM" or config.architecture == "PhiMoEForCausalLM": rope_scaling_short_mscale = config.longrope_short_mscale rope_scaling_long_mscale = config.longrope_long_mscale embed_positions_short_factors, embed_positions_long_factors, \ (short_inv_freq, embed_positions_short_factors_for_attention_plugin), \ (long_inv_freq, embed_positions_long_factors_for_attention_plugin), mscale \ = RopeEmbeddingUtils.create_sinusoidal_positions_long_rope( max_position_embeddings, original_max_position_embeddings, rotary_embedding_dim, rotary_embedding_base, rope_scaling_short_factors, rope_scaling_long_factors, rope_scaling_short_mscale, rope_scaling_long_mscale) if rope_scaling_short_mscale is not None: assert rope_scaling_long_mscale is not None short_mscale = rope_scaling_short_mscale long_mscale = rope_scaling_long_mscale else: short_mscale = long_mscale = mscale short_inv_freq = short_inv_freq.reshape(1, -1) long_inv_freq = long_inv_freq.reshape(1, -1) model_cls.register_parameter( 'embed_positions_short_factors', Parameter(embed_positions_short_factors, dtype='float32', is_buffer=True)) model_cls.register_parameter( 'embed_positions_long_factors', Parameter(embed_positions_long_factors, dtype='float32', is_buffer=True)) model_cls.register_parameter( 'embed_positions_short_factors_for_attention_plugin', Parameter( embed_positions_short_factors_for_attention_plugin, dtype='float32', is_buffer=True)) model_cls.register_parameter( 'embed_positions_long_factors_for_attention_plugin', Parameter(embed_positions_long_factors_for_attention_plugin, dtype='float32', is_buffer=True)) model_cls.short_mscale = short_mscale model_cls.long_mscale = long_mscale model_cls.register_parameter( 'short_inv_freq', Parameter(short_inv_freq, dtype='float32', is_buffer=True)) model_cls.register_parameter( 'long_inv_freq', Parameter(long_inv_freq, dtype='float32', is_buffer=True)) else: # Rotary const weights. embed_positions = RopeEmbeddingUtils.create_sinusoidal_positions( max_position_embeddings, rotary_embedding_dim, ) rotary_inv_freq, embed_positions_for_gpt_attention = RopeEmbeddingUtils.create_sinusoidal_positions_for_attention_plugin( max_position_embeddings, rotary_embedding_dim, rotary_embedding_base, rotary_embedding_scale, rotary_embedding_scale_type, rotary_embedding_scaling) model_cls.register_parameter( 'embed_positions', Parameter(embed_positions, dtype='float32', is_buffer=True)) model_cls.register_parameter( 'rotary_inv_freq', Parameter(rotary_inv_freq, dtype='float32', is_buffer=True)) model_cls.register_parameter( 'embed_positions_for_gpt_attention', Parameter(embed_positions_for_gpt_attention, dtype='float32', is_buffer=True))
[docs] @staticmethod def fill_attention_params(model_cls, attention_params): if model_cls.position_embedding_type.is_rope(): if attention_params is None: attention_params = AttentionParams() if model_cls.position_embedding_type == PositionEmbeddingType.long_rope: if hasattr(model_cls, "embed_positions_short_factors"): return attention_params.fill_attention_const_params_for_long_rope( model_cls.embed_positions_short_factors.value, model_cls.embed_positions_long_factors.value, model_cls. embed_positions_short_factors_for_attention_plugin. value, model_cls. embed_positions_long_factors_for_attention_plugin.value, model_cls.short_mscale, model_cls.long_mscale, model_cls.short_inv_freq.value, model_cls.long_inv_freq.value) else: return attention_params.fill_attention_const_params_for_rope( model_cls.embed_positions.value, model_cls.rotary_inv_freq.value, model_cls.embed_positions_for_gpt_attention.value) # Fill nothing. return attention_params
[docs] def forward(self, hidden_states: Tensor, attention_mask=None, attention_packed_mask=None, use_cache=False, spec_decoding_params=None, kv_cache_params=None, attention_params=None, encoder_output: Optional[Tensor] = None, position_embedding=None, norm_before_bmm1=False, lora_layer_params=None, cross_kv_cache_gen: Optional[Tensor] = None, cross_kv_reuse: Optional[Tensor] = None, reduce_fusion_params: Optional[AllReduceFusionParams] = None): assert isinstance(hidden_states, Tensor) spec_decoding_params = SpecDecodingParams( ) if spec_decoding_params is None else spec_decoding_params alibi_slopes = None if self.position_embedding_type.is_alibi(): alibi_slopes = self.alibi_slopes.value if default_net().plugin_config.gpt_attention_plugin: alibi_slopes = cast(alibi_slopes, hidden_states.dtype) qkv_lora_params = None if lora_layer_params is not None: if not self.cross_attention: qkv_lora_params = lora_layer_params.get_runtime_params( 0, "attn_qkv") else: qkv_lora_params = lora_layer_params.get_runtime_params( 0, "cross_attn_qkv") unfuse_qkv_gemm = self.qkv is None if unfuse_qkv_gemm: qkv_gemm = [self.q, self.k, self.v] qkv = [gemm(hidden_states) for gemm in qkv_gemm] if default_net( ).plugin_config.lora_plugin and qkv_lora_params is not None: lora = self.qkv.lora(hidden_states, qkv_lora_params) kv_size = self.attention_head_size * self.num_attention_kv_heads qkv_lora = split(lora, [self.attention_hidden_size, kv_size, kv_size], dim=1) qkv = [tensor + lora for tensor, lora in zip(qkv, qkv_lora)] else: qkv = self.qkv(hidden_states, qkv_lora_params) if self.clip_qkv is not None: qkv = clip(qkv, -self.clip_qkv, self.clip_qkv) if default_net().plugin_config.remove_input_padding: if unfuse_qkv_gemm: for tensor in qkv: assert tensor.ndim() == 2 else: assert qkv.ndim() == 2 if default_net( ).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None: if not self.cross_attention: q_lora_params = lora_layer_params.get_runtime_params( 0, "attn_q") k_lora_params = lora_layer_params.get_runtime_params( 0, "attn_k") v_lora_params = lora_layer_params.get_runtime_params( 0, "attn_v") else: q_lora_params = lora_layer_params.get_runtime_params( 0, "cross_attn_q") k_lora_params = lora_layer_params.get_runtime_params( 0, "cross_attn_k") v_lora_params = lora_layer_params.get_runtime_params( 0, "cross_attn_v") assert (q_lora_params is not None and k_lora_params is not None and v_lora_params is not None) or \ (q_lora_params is None and k_lora_params is None and v_lora_params is None), "q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time." if q_lora_params is not None and k_lora_params is not None and v_lora_params is not None: qkv_lora_runtime_params = LoraRuntimeParams( lora_ranks=[ q_lora_params.lora_ranks[0], k_lora_params.lora_ranks[0], v_lora_params.lora_ranks[0], ], lora_weights_pointers=[ q_lora_params.lora_weights_pointers[0], k_lora_params.lora_weights_pointers[0], v_lora_params.lora_weights_pointers[0], ], host_request_types=q_lora_params.host_request_types, host_context_lengths=q_lora_params.host_context_lengths, max_encoder_context_length=q_lora_params. max_encoder_context_length, host_encoder_input_lengths=q_lora_params. host_encoder_input_lengths, ) q_lora, k_lora, v_lora = self.qkv_lora(hidden_states, qkv_lora_runtime_params) qkv_lora = concat([q_lora, k_lora, v_lora], dim=q_lora.rank() - 1) qkv = qkv + qkv_lora if self.qk_layernorm: base_shape = shape(qkv, 0) if qkv.ndim() == 2 else concat( [shape(qkv, 0), shape(qkv, 1)]) qkv_sections = [ self.num_attention_heads, self.num_attention_kv_heads, self.num_attention_kv_heads ] total_heads = sum(qkv_sections) if self.num_attention_heads != self.num_attention_kv_heads: qkv = qkv.view( concat([base_shape, total_heads, self.attention_head_size])) query, key, value = split(qkv, qkv_sections, dim=qkv.ndim() - 2) else: qkv = qkv.view( concat([ base_shape, self.num_attention_heads, 3, self.attention_head_size ])) query, key, value = split(qkv, 1, dim=qkv.ndim() - 2) q_shape = concat([ base_shape, self.num_attention_heads, self.attention_head_size ]) query = query.view(q_shape) key = key.view(q_shape) value = value.view(q_shape) normalized_shape = None if not self.layernorm_share: normalized_shape = self.attention_head_size query = self.q_layernorm(query, normalized_shape=normalized_shape) key = self.k_layernorm(key, normalized_shape=normalized_shape) qkv = concat([query, key, value], dim=query.ndim() - 2) qkv = qkv.view( concat([base_shape, total_heads * self.attention_head_size])) if self.position_embedding_type == PositionEmbeddingType.chatglm: qkv = RopeEmbeddingUtils.apply_rotary_pos_emb_chatglm( qkv, position_embedding, self.num_attention_heads, self.attention_head_size, self.max_position_embeddings, self.rotary_embedding_scale, default_net().plugin_config.remove_input_padding, ) self.rotary_embedding_scale_type = RotaryScalingType.none self.rotary_embedding_scale = 1.0 paged_kv_cache = default_net().plugin_config.paged_kv_cache assert attention_params is None or attention_params.is_valid( default_net().plugin_config.gpt_attention_plugin, default_net().plugin_config.remove_input_padding, use_cache) if use_cache: assert kv_cache_params is None or kv_cache_params.is_valid( default_net().plugin_config.gpt_attention_plugin) past_key_value = None if kv_cache_params is None else kv_cache_params.get_first_past_key_value( ) # if cross attention, cross QKV only needs to be calculated once in the # 1st decoding step --> write to cross KV cache --> remains constant # during the entire decoding steps. # 1st and >1st steps are distinguished by a boolean tensor `cross_kv_cache_gen` passed at runtime # also, cross KV cache max length is set from encoder output seqlen, # this maps to the max context length concept in decoder-only models cross_kv = None if self.cross_attention and encoder_output: assert isinstance(encoder_output, Tensor) def compute_cross_kv(encoder_output): cross_qkv = self.qkv(encoder_output, qkv_lora_params) base_shape = shape( cross_qkv, 0) if cross_qkv.ndim() == 2 else concat( [shape(cross_qkv, 0), shape(cross_qkv, 1)]) cross_qkv = cross_qkv.view( concat([ base_shape, self.num_attention_heads + 2 * self.num_attention_kv_heads, self.attention_head_size ])) if self.qk_layernorm: _, key, value = split(cross_qkv, [ self.num_attention_heads, self.num_attention_kv_heads, self.num_attention_kv_heads ], dim=cross_qkv.ndim() - 2) key = self.k_layernorm(key) key = key.view( concat([ base_shape, self.num_attention_kv_heads, self.attention_head_size ])) cross_kv = concat([key, value], dim=key.ndim() - 2) else: _, cross_kv = split(cross_qkv, [ self.num_attention_heads, self.num_attention_kv_heads * 2 ], dim=cross_qkv.ndim() - 2) cross_kv = cross_kv.view( concat([ base_shape, 2 * self.num_attention_kv_heads * self.attention_head_size ])) if default_net( ).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None: _, cross_k_lora, cross_v_lora = self.qkv_lora( encoder_output, qkv_lora_runtime_params, is_cross_attention=True) cross_kv_lora = concat([cross_k_lora, cross_v_lora], dim=cross_k_lora.rank() - 1) cross_kv = cross_kv + cross_kv_lora return cross_kv if self.skip_cross_kv: conditional = Conditional(cross_kv_cache_gen) cond_in1 = conditional.add_input(encoder_output) cond_in2 = conditional.add_input(cross_kv_reuse) ## True branch: context phase, compute cross qkv cross_kv_true = compute_cross_kv(cond_in1) ## False branch: generation phase, no compute but need to obey shape constraints # because TRT's IfConditional requires the output shape of two subgraphs to be identical # our 1st attempt was to stack encoder_output [B, S, H] or [N, H] --> cross qkv [B, S, 3*H] or [N, 3*H], # but it still introduces unnecessary concat. A better solution is to create a dummy torch tensor `cross_kv_resue` # with the correct shape and reuse it in every generation step cross_kv_false = cond_in2 cross_kv = conditional.add_output(cross_kv_true, cross_kv_false) else: cross_kv = compute_cross_kv(encoder_output) if default_net().plugin_config.gpt_attention_plugin: if self.cross_attention and (past_key_value is not None): past_key_value = kv_cache_params.past_key_value[1] assert self.attention_mask_type in [ AttentionMaskType.causal, AttentionMaskType.bidirectional, AttentionMaskType.bidirectionalglm, AttentionMaskType.blocksparse ], 'Plugin only support masked MHA.' # KV cache scales. if self.kv_cache_scaling_factor is not None: kv_orig_quant_scale = constant(fp32_array( [1.0])) / self.kv_cache_scaling_factor.value kv_quant_orig_scale = self.kv_cache_scaling_factor.value else: kv_orig_quant_scale = None kv_quant_orig_scale = None # Attention output scales assert ( not default_net().plugin_config.use_fp8_context_fmha ) or self.quant_mode.has_fp8_qdq( ), "FP8 Context FMHA must be used together with the fp8 quantization workflow." attention_output_orig_quant_scale = self.attention_output_orig_quant_scale.value if self.attention_output_orig_quant_scale is not None else None if self.position_embedding_type == PositionEmbeddingType.long_rope: max_seq_length = fmax(attention_params.sequence_length, dim=0) floor_seq_length = maximum( max_seq_length, self.original_max_position_embeddings) short = attention_params.embed_positions_short_factors_for_attention_plugin long = attention_params.embed_positions_long_factors_for_attention_plugin starts = concat([0, 0, 0]) shapes = concat( [floor_seq_length, self.rotary_embedding_dim // 2, 2]) short = slice(short, starts, shapes).view((1, -1)) long = slice(long, starts, shapes).view((1, -1)) use_long_factors = gt(max_seq_length, self.original_max_position_embeddings) cond = Conditional(use_long_factors) true_val = cond.add_input(long) false_val = cond.add_input(short) rotary_cos_sin = cond.add_output(true_val, false_val) cond = Conditional(use_long_factors) true_val = cond.add_input(attention_params.long_inv_freq) false_val = cond.add_input(attention_params.short_inv_freq) rotary_inv_freq = cond.add_output(true_val, false_val) else: # The rotary inv freq can be pre-computed. rotary_inv_freq = getattr(attention_params, "rotary_inv_freq", None) # Rotary cos/sin cache. rotary_cos_sin = getattr(attention_params, "embed_positions_for_gpt_attention", None) if self.position_embedding_type == PositionEmbeddingType.learned_absolute: rotary_inv_freq = None rotary_cos_sin = None # check if the cache is provided. if self.position_embedding_type.is_rope(): assert (rotary_inv_freq is not None) and ( rotary_cos_sin is not None ), "rotary_inv_freq and embed_positions_for_gpt_attention must be provided." context, past_key_value = gpt_attention( qkv=qkv, past_key_value=past_key_value, attention_mask=attention_mask, attention_packed_mask=attention_packed_mask, sequence_length=attention_params.sequence_length, host_past_key_value_lengths=kv_cache_params. host_past_key_value_lengths, host_max_attention_window_sizes=kv_cache_params. host_max_attention_window_sizes, host_sink_token_length=kv_cache_params.host_sink_token_length, context_lengths=attention_params.context_lengths, cache_indirection=kv_cache_params.cache_indirection, host_request_types=attention_params.host_request_types, layer_idx=self.local_layer_idx, num_heads=self.num_attention_heads, num_kv_heads=self.num_attention_kv_heads, layer_idx_in_cache_pool=self.layer_idx_in_cache_pool, hidden_size_per_head=self.attention_head_size, q_scaling=self.q_scaling, rotary_embedding_dim=self.rotary_embedding_dim, rotary_embedding_base=self.rotary_embedding_base, rotary_embedding_scale_type=self.rotary_embedding_scale_type, rotary_embedding_short_m_scale=attention_params.short_mscale, rotary_embedding_long_m_scale=attention_params.long_mscale, rotary_embedding_scale=self.rotary_embedding_scale, rotary_embedding_max_positions=self.max_position_embeddings, rotary_embedding_original_max_positions=self. original_max_position_embeddings, position_embedding_type=self.position_embedding_type, rotary_inv_freq=rotary_inv_freq, rotary_cos_sin=rotary_cos_sin, kv_orig_quant_scale=kv_orig_quant_scale, kv_quant_orig_scale=kv_quant_orig_scale, attention_output_orig_quant_scale= attention_output_orig_quant_scale, kv_cache_quant_mode=self.quant_mode, max_context_length=attention_params.max_context_length, mask_type=self.attention_mask_type, block_sparse_block_size=self.block_sparse_params.block_size, block_sparse_homo_head_pattern=self.block_sparse_params. homo_head_pattern, block_sparse_num_local_blocks=self.block_sparse_params. num_local_blocks, block_sparse_vertical_stride=self.block_sparse_params. vertical_stride, alibi_slopes=alibi_slopes, tp_size=self.tp_size, tp_rank=self.tp_rank, kv_cache_block_offsets=kv_cache_params.kv_cache_block_offsets if not self.cross_attention else kv_cache_params.cross_kv_cache_block_offsets, host_kv_cache_block_offsets=kv_cache_params. host_kv_cache_block_offsets if not self.cross_attention else kv_cache_params.host_cross_kv_cache_block_offsets, host_kv_cache_pool_pointers=kv_cache_params. host_kv_cache_pool_pointers if not self.cross_attention else kv_cache_params.host_cross_kv_cache_pool_pointers, host_kv_cache_pool_mapping=kv_cache_params. host_kv_cache_pool_mapping if not self.cross_attention else kv_cache_params.host_cross_kv_cache_pool_mapping, do_cross_attention=self.cross_attention, cross_kv=cross_kv, cross_kv_length=attention_params.encoder_max_input_length, encoder_input_lengths=attention_params.encoder_input_lengths, relative_attention_bias=self.rel_attn_table.value if self.relative_attention else None, max_distance=self.max_distance, host_context_lengths=attention_params.host_context_lengths, use_cache=use_cache, spec_decoding_is_generation_length_variable=spec_decoding_params .spec_decoding_is_generation_length_variable, spec_decoding_max_generation_length=spec_decoding_params. spec_decoding_max_generation_length, spec_decoding_generation_lengths=spec_decoding_params. spec_decoding_generation_lengths, spec_decoding_position_offsets=spec_decoding_params. spec_decoding_position_offsets, spec_decoding_packed_mask=spec_decoding_params. spec_decoding_packed_mask, qk_tanh_scale=self.max_attn_value, host_runtime_perf_knobs=attention_params. host_runtime_perf_knobs, host_context_progress=attention_params.host_context_progress, ) else: # plain TensorRT mode assert paged_kv_cache == False def transpose_for_scores(x, rotary: bool = False, is_kv: bool = False): _num_attention_heads = self.num_attention_kv_heads if is_kv else self.num_attention_heads new_x_shape = concat([ shape(x, 0), shape(x, 1), _num_attention_heads, self.attention_head_size ]) if rotary: return x.view(new_x_shape) else: return x.view(new_x_shape).permute([0, 2, 1, 3]) # qkv after projection is of shape # [bs, seqlen, (num_attention_heads + 2 * num_attention_kv_heads), attention_head_size]. # The projected and split qkv after transpose_for_scores(): # Q[bs, num_attention_heads, seqlen, attention_head_size] # K[bs, num_attention_kv_heads, seqlen, attention_head_size] # V[bs, num_attention_kv_heads, seqlen, attention_head_size] kv_size = self.attention_head_size * self.num_attention_kv_heads if unfuse_qkv_gemm: query, key, value = qkv[0], qkv[1], qkv[2] else: query, key, value = split( qkv, [self.attention_hidden_size, kv_size, kv_size], dim=2) # in cross attention mode, replace kv by encoder_output if self.cross_attention and encoder_output is not None: key, value = split(cross_kv, [kv_size, kv_size], dim=2) query = transpose_for_scores( query, rotary=self.position_embedding_type.is_rope()) key = transpose_for_scores( key, is_kv=True, rotary=self.position_embedding_type.is_rope()) value = transpose_for_scores(value, is_kv=True) if self.position_embedding_type.is_rope(): if self.position_embedding_type == PositionEmbeddingType.long_rope: sequence_length = shape(hidden_states, 1) floor_seq_length = maximum( sequence_length, self.original_max_position_embeddings) starts = concat([0, 0, 0]) shapes = concat( [1, floor_seq_length, self.rotary_embedding_dim]) short = slice( attention_params.embed_positions_short_factors, starts, shapes) long = slice(attention_params.embed_positions_long_factors, starts, shapes) embed_positions = concat([short, long], dim=0) select = where( sequence_length <= self.original_max_position_embeddings, 0, 1) embed_positions = slice(embed_positions, concat([select, 0, 0]), sizes=shape(short)) embed_positions = cast(embed_positions, self.dtype) elif is_same_dtype(self.dtype, trt.bfloat16): embed_positions = cast(attention_params.embed_positions, trt.bfloat16) else: embed_positions = cast(attention_params.embed_positions, query.dtype) if self.rotary_embedding_dim is not None: # When shape(hidden_states, 1) > 1(Context phase), the embedding start from 0, # otherwise (Generation phase) move start to position if not use_cache: # Only context phase is involved when kv cache is disabled. start = 0 else: start = where( shape(hidden_states, 1) > 1, 0, shape(past_key_value, 3)) size = where( shape(hidden_states, 1) > 1, shape(hidden_states, 1), 1) sincos = slice(embed_positions, concat([0, start, 0]), concat([1, size, self.rotary_embedding_dim])) sin, cos = split(sincos, self.rotary_embedding_dim // 2, dim=-1) key_rot_size = concat([ shape(key, 0), shape(key, 1), shape(key, 2), self.rotary_embedding_dim ]) query_rot_size = concat([ shape(query, 0), shape(query, 1), shape(query, 2), self.rotary_embedding_dim ]) remaining = shape(key, 3) - self.rotary_embedding_dim key_pass_size = concat([ shape(key, 0), shape(key, 1), shape(key, 2), remaining ]) query_pass_size = concat([ shape(query, 0), shape(query, 1), shape(query, 2), remaining ]) k_rot = slice(key, [0, 0, 0, 0], key_rot_size) k_pass = slice(key, [0, 0, 0, self.rotary_embedding_dim], key_pass_size) q_rot = slice(query, [0, 0, 0, 0], query_rot_size) q_pass = slice(query, [0, 0, 0, self.rotary_embedding_dim], query_pass_size) k_rot = RopeEmbeddingUtils.apply_rotary_pos_emb( k_rot, [cos, sin], self.position_embedding_type) q_rot = RopeEmbeddingUtils.apply_rotary_pos_emb( q_rot, [cos, sin], self.position_embedding_type) key = concat([k_rot, k_pass], dim=3) query = concat([q_rot, q_pass], dim=3) else: key = RopeEmbeddingUtils.apply_rotary_pos_emb( key, [cos, sin], self.position_embedding_type) query = RopeEmbeddingUtils.apply_rotary_pos_emb( query, [cos, sin], self.position_embedding_type) key = key.permute([0, 2, 1, 3]) query = query.permute([0, 2, 1, 3]) if past_key_value is not None and not self.cross_attention: if self.kv_cache_scaling_factor is not None: past_key_value = dequantize( past_key_value, self.kv_cache_scaling_factor.value, output_type=self.dtype) # past_key_value [bs, 2, num_heads, max_seq_len, head_dim] past_key, past_value = split(past_key_value, 1, dim=1) key_shape = concat([ shape(past_key, 0), shape(past_key, 2), shape(past_key, 3), shape(past_key, 4) ]) past_key = past_key.view(key_shape, zero_is_placeholder=False) past_value = past_value.view(key_shape, zero_is_placeholder=False) key = concat([past_key, key], dim=2) value = concat([past_value, value], dim=2) if use_cache: key_inflated_shape = concat([ shape(key, 0), 1, shape(key, 1), shape(key, 2), shape(key, 3) ]) inflated_key = key.view(key_inflated_shape, zero_is_placeholder=False) inflated_value = value.view(key_inflated_shape, zero_is_placeholder=False) past_key_value = concat([inflated_key, inflated_value], dim=1) # TRT quantizes the tensor value by doing `cast(clip(fp_value / scale))` while # the plugin quantizes it by doing `cast(clip(fp_value * scale))`. if self.kv_cache_scaling_factor is not None: past_key_value = quantize( past_key_value, self.kv_cache_scaling_factor.value, dtype='fp8' if self.quant_mode.has_fp8_kv_cache() else 'int8') # MQA broadcast if self.num_attention_heads // self.num_attention_kv_heads > 1: key = repeat_interleave( key, self.num_attention_heads // self.num_attention_kv_heads, 1) value = repeat_interleave( value, self.num_attention_heads // self.num_attention_kv_heads, 1) key_length = shape(key, 2) # The following code creates a 2D tensor with 0s in the lower triangular (including the diagonal) and # +INF in the upper triangular parts. This bias tensor will be added to the output of the Q*K^T matrix # multiplication (BMM1). The +INF elements will be transformed to 0s by the Softmax operator that # follows. The elements that corresponds to 0s in the bias are unaffected by the bias tensor. # # Note that when we added to another bias tensor B (for example, with AliBi), the values in the lower- # triangular part of the B tensor are not affected and the upper-triangular ones are set to +INF. if self.attention_mask_type == AttentionMaskType.causal and not self.cross_attention: if self.position_embedding_type.is_alibi(): query_length = shape(query, 2) # bsz, tatget_length, past_key_value_length buffer = make_causal_mask(shape(query, 0), query_length, key_length - query_length, trt.float32) starts = concat([0, 0, 0, 0]) sizes = concat([1, 1, query_length, key_length]) generated_mask = slice(buffer, starts, sizes) else: query_length = shape(query, 2) starts = concat([0, 0, key_length - query_length, 0]) sizes = concat([1, 1, query_length, key_length]) if self.position_embedding_type == PositionEmbeddingType.long_rope: buf_shape = (self.original_max_position_embeddings, self.original_max_position_embeddings) else: buf_shape = (self.max_position_embeddings, self.max_position_embeddings) select_buf = np.expand_dims( np.tril(np.ones(buf_shape)).astype(bool), (0, 1)) select_buf = np.logical_not(select_buf) mask_buf = np.zeros_like(select_buf, np.float32) mask_buf[select_buf] = float('-inf') buffer = constant(mask_buf) generated_mask = slice(buffer, starts, sizes) elif self.attention_mask_type == AttentionMaskType.bidirectional and not self.cross_attention: query_length = shape(query, 2) zero_buf = np.expand_dims( np.zeros((self.max_position_embeddings, self.max_position_embeddings), dtype=np.float32), (0, 1)) zero_buf[:, :, :-1, -1] = 1 zero_buf *= -10000 mask = constant(zero_buf) # context phase, query_length mask_size = where(query_length > 1, query_length, 1) mask_start = where(query_length > 1, self.max_position_embeddings - mask_size, 1) start = concat([0, 0, mask_start, mask_start]) size = concat([1, 1, mask_size, mask_size]) generated_mask = slice(mask, start, size) if attention_mask is not None: if self.cross_attention: batch_size = shape(attention_mask, 0) query_len = shape(attention_mask, 1) encoder_input_len = shape(attention_mask, 2) attention_mask = attention_mask.view( concat([batch_size, 1, query_len, encoder_input_len])) attention_mask = where(attention_mask == 0, float('-inf'), 0.0) else: attention_mask = expand_mask(attention_mask, shape(query, 2)) bias = attention_mask if self.position_embedding_type.is_alibi(): alibi_biases = generate_alibi_biases(alibi_slopes, key_length) bias = alibi_biases if bias is None else bias + alibi_biases if self.relative_attention: query_length = shape(query, 2) if self.use_implicit_relative_attention: relative_bias = compute_relative_bias( query_length + key_length - 1, key_length, self.num_buckets, self.max_distance, False, # bidirectional self.rel_attn_table.value.transpose(1, 0), tp_size=self.tp_size, tp_group=self.tp_group, tp_rank=self.tp_rank) else: relative_bias = unsqueeze(self.rel_attn_table.value, 0) start = concat([0, 0, query_length + key_length - 2, 0]) size = concat([ shape(relative_bias, 0), shape(relative_bias, 1), 1, key_length ]) relative_bias = slice(relative_bias, start, size) key = key.permute([0, 1, 3, 2]) with precision('float32'): if norm_before_bmm1: # Apply norm on query earlier to prevent matmul fp16 overflow. query /= (self.q_scaling * self.norm_factor) attention_scores = matmul(query, key) if not norm_before_bmm1: attention_scores = attention_scores / (self.q_scaling * self.norm_factor) if self.max_attn_value > 0: attention_scores = self.max_attn_value * ACT2FN['tanh']( attention_scores / self.max_attn_value) if self.attention_mask_type in [ AttentionMaskType.causal, AttentionMaskType.bidirectional ] and not self.cross_attention: bias = generated_mask if bias is None else bias + generated_mask if bias is not None: bias = cast(bias, attention_scores.dtype) attention_scores = attention_scores + bias if self.relative_attention: attention_scores = attention_scores + relative_bias attention_probs = softmax(attention_scores, dim=-1) # A dummy reshape WAR for mha fusion attention_probs = attention_probs.view( concat([ shape(attention_probs, 0), shape(attention_probs, 1), shape(attention_probs, 2), shape(value, 2) ])) context = matmul(attention_probs, value, use_fp32_acc=False).permute([0, 2, 1, 3]) context = context.view( concat([ shape(context, 0), shape(context, 1), self.attention_hidden_size ])) dense_lora_params = None if lora_layer_params is not None: dense_lora_params = lora_layer_params.get_runtime_params( 0, "attn_dense") if self.inner_layernorm is not None: context = self.inner_layernorm(context) context = self.dense(context, lora_runtime_params=dense_lora_params, reduce_fusion_params=reduce_fusion_params) if use_cache: return (context, past_key_value) else: return context
[docs] def set_rel_attn_table(self, max_seq_len, precomputed_relative_attention): self.rel_attn_table = Parameter(shape=(self.num_attention_heads, max_seq_len + 1, max_seq_len + 1), dtype=self.dtype) self.rel_attn_table.value = precomputed_relative_attention
[docs] def postprocess(self, tllm_key, weights, **kwargs): if tllm_key.endswith("kv_cache_scaling_factor") and weights is None: return {tllm_key: torch.ones(1, )} else: return {tllm_key: weights}
[docs] class BertAttention(Module): def __init__(self, hidden_size, num_attention_heads, max_position_embeddings=1024, num_layers=1, attention_head_size=None, num_kv_heads=None, q_scaling=1.0, apply_query_key_layer_scaling=False, bias=True, dtype=None, tp_group=None, tp_size=1, tp_rank=0, cp_group=None, cp_size=1, relative_attention=False, max_distance=0, num_buckets=0, quant_mode=QuantMode(0)): super().__init__() self.attention_head_size = hidden_size // num_attention_heads if attention_head_size is None else attention_head_size self.num_attention_heads = num_attention_heads // tp_size self.num_attention_kv_heads = ( num_kv_heads + tp_size - 1 ) // tp_size if num_kv_heads is not None else self.num_attention_heads self.hidden_size = hidden_size self.attention_hidden_size = self.attention_head_size * self.num_attention_heads self.max_position_embeddings = max_position_embeddings self.norm_factor = math.sqrt(self.attention_head_size) self.tp_group = tp_group self.tp_size = tp_size self.tp_rank = tp_rank self.cp_group = cp_group self.cp_size = cp_size self.num_layers = num_layers self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.norm_factor = math.sqrt(self.attention_head_size) self.q_scaling = q_scaling if self.apply_query_key_layer_scaling: self.norm_factor *= self.num_layers self.q_scaling *= self.num_layers self.dtype = dtype # add quant mode to control quantization self.quant_mode = quant_mode self.relative_attention = relative_attention self.max_distance = max_distance self.num_buckets = num_buckets # out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size # example: d_model != num_heads * head_size in Flan-T5 self.qkv = ColumnLinear(hidden_size, tp_size * self.attention_hidden_size + (2 * tp_size * self.num_attention_kv_heads * self.attention_head_size), bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False, is_qkv=True) self.dense = RowLinear(tp_size * self.num_attention_heads * self.attention_head_size, hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size) # see optimize_model's add_lora for LoRA initialization self.qkv_lora = None # per-layer relative attention table if relative_attention: self.rel_attn_table = Parameter(shape=(num_attention_heads // tp_size, num_buckets), dtype=dtype)
[docs] def forward(self, hidden_states: Tensor, attention_mask=None, input_lengths=None, max_input_length=None, lora_layer_params=None): assert isinstance(hidden_states, Tensor) qkv_lora_params = None if lora_layer_params is not None: qkv_lora_params = lora_layer_params.get_runtime_params( 0, "attn_qkv") qkv = self.qkv(hidden_states, qkv_lora_params) if default_net().plugin_config.remove_input_padding: assert qkv.ndim() == 2 if default_net( ).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None: q_lora_params = lora_layer_params.get_runtime_params(0, "attn_q") k_lora_params = lora_layer_params.get_runtime_params(0, "attn_k") v_lora_params = lora_layer_params.get_runtime_params(0, "attn_v") assert (q_lora_params is not None and k_lora_params is not None and v_lora_params is not None) or \ (q_lora_params is None and k_lora_params is None and v_lora_params is None), "q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time." if q_lora_params is not None and k_lora_params is not None and v_lora_params is not None: qkv_lora_params = LoraRuntimeParams( lora_ranks=[ q_lora_params.lora_ranks[0], k_lora_params.lora_ranks[0], v_lora_params.lora_ranks[0], ], lora_weights_pointers=[ q_lora_params.lora_weights_pointers[0], k_lora_params.lora_weights_pointers[0], v_lora_params.lora_weights_pointers[0], ], host_request_types=q_lora_params.host_request_types, host_context_lengths=q_lora_params.host_context_lengths) q_lora, k_lora, v_lora = self.qkv_lora(hidden_states, qkv_lora_params) qkv_lora = concat([q_lora, k_lora, v_lora], dim=q_lora.rank() - 1) qkv = qkv + qkv_lora if default_net().plugin_config.bert_attention_plugin: # TRT plugin mode assert input_lengths is not None assert self.cp_size == 1 context = bert_attention( qkv, input_lengths, self.num_attention_heads, self.attention_head_size, q_scaling=self.q_scaling, relative_attention=self.relative_attention, max_distance=self.max_distance, relative_attention_bias=self.rel_attn_table.value if self.relative_attention else None, max_input_length=max_input_length) else: # plain TRT mode def transpose_for_scores(x): new_x_shape = concat([ shape(x, 0), shape(x, 1), self.num_attention_heads, self.attention_head_size ]) return x.view(new_x_shape).permute([0, 2, 1, 3]) kv_size = self.attention_head_size * self.num_attention_kv_heads query, key, value = split( qkv, [self.attention_hidden_size, kv_size, kv_size], dim=2) if self.cp_size > 1 and self.cp_group is not None: key = allgather(key, self.cp_group, gather_dim=1) value = allgather(value, self.cp_group, gather_dim=1) query = transpose_for_scores(query) key = transpose_for_scores(key) value = transpose_for_scores(value) key = key.permute([0, 1, 3, 2]) attention_scores = matmul(query, key, use_fp32_acc=False) attention_scores = attention_scores / (self.q_scaling * self.norm_factor) if self.relative_attention: query_len = shape(attention_scores, 2) key_len = shape(attention_scores, 3) bias = compute_relative_bias( query_len, key_len, self.num_buckets, self.max_distance, True, # bidirectional self.rel_attn_table.value.transpose(1, 0), tp_size=self.tp_size, tp_group=self.tp_group, tp_rank=self.tp_rank) attention_scores = attention_scores + bias if attention_mask is not None: attention_mask = expand_mask(attention_mask, shape(query, 2)) attention_mask = cast(attention_mask, attention_scores.dtype) attention_scores = attention_scores + attention_mask attention_probs = softmax(attention_scores, dim=-1) context = matmul(attention_probs, value, use_fp32_acc=False).permute([0, 2, 1, 3]) context = context.view( concat([ shape(context, 0), shape(context, 1), self.attention_hidden_size ])) dense_lora_params = None if lora_layer_params is not None: dense_lora_params = lora_layer_params.get_runtime_params( 0, "attn_dense") context = self.dense(context, lora_runtime_params=dense_lora_params) return context
[docs] class CogVLMAttention(Attention): def __init__( self, *, local_layer_idx, hidden_size, num_attention_heads, num_kv_heads=None, max_position_embeddings=1024, attention_mask_type=AttentionMaskType.causal, bias=True, dtype=None, position_embedding_type=PositionEmbeddingType.learned_absolute, rotary_embedding_base=10000.0, rotary_embedding_scaling=None, tp_group=None, tp_size=1, tp_rank=0, quant_mode: QuantMode = QuantMode(0), dense_bias=None, ): super().__init__(local_layer_idx=local_layer_idx, hidden_size=hidden_size, num_attention_heads=num_attention_heads, num_kv_heads=num_kv_heads, max_position_embeddings=max_position_embeddings, dtype=dtype, attention_mask_type=attention_mask_type, bias=bias, position_embedding_type=position_embedding_type, rotary_embedding_base=rotary_embedding_base, rotary_embedding_scaling=rotary_embedding_scaling, tp_group=tp_group, tp_size=tp_size, tp_rank=tp_rank, quant_mode=quant_mode) self.vis_qkv = ColumnLinear( hidden_size, tp_size * self.num_attention_heads * self.attention_head_size + (2 * tp_size * self.num_attention_kv_heads * self.attention_head_size), bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False, is_qkv=True) self.vis_dense = RowLinear(tp_size * self.num_attention_heads * self.attention_head_size, hidden_size, bias=self.dense_bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size)
[docs] def forward(self, hidden_states: Tensor, use_cache=False, kv_cache_params=None, attention_params=None, vision_token_mask=None, position_embedding=None): assert isinstance(hidden_states, Tensor) assert (default_net().plugin_config.gpt_attention_plugin) vision_qkv = self.vis_qkv(hidden_states) language_qkv = self.qkv(hidden_states) qkv = where(vision_token_mask, vision_qkv, language_qkv) qkv = RopeEmbeddingUtils.apply_rotary_pos_emb_cogvlm( qkv, position_embedding, self.num_attention_heads, self.attention_head_size, self.max_position_embeddings, self.rotary_embedding_scale, default_net().plugin_config.remove_input_padding) assert attention_params is None or attention_params.is_valid( default_net().plugin_config.gpt_attention_plugin, default_net().plugin_config.remove_input_padding, use_cache) assert kv_cache_params is None or kv_cache_params.is_valid( default_net().plugin_config.gpt_attention_plugin) past_key_value = None if kv_cache_params is None else kv_cache_params.get_first_past_key_value( ) if default_net().plugin_config.gpt_attention_plugin: if self.cross_attention and (past_key_value is not None): past_key_value = kv_cache_params.past_key_value[1] assert self.attention_mask_type in [ AttentionMaskType.causal, AttentionMaskType.bidirectional, AttentionMaskType.bidirectionalglm ], 'Plugin only support masked MHA.' # KV cache scales. kv_orig_quant_scale = constant( fp32_array([1.0]) ) / self.kv_cache_scaling_factor.value if self.quant_mode.has_kv_cache_quant( ) else None kv_quant_orig_scale = self.kv_cache_scaling_factor.value if self.quant_mode.has_kv_cache_quant( ) else None # Attention output scales assert ( not default_net().plugin_config.use_fp8_context_fmha ) or self.quant_mode.has_fp8_qdq( ), "FP8 Context FMHA must be used together with the fp8 quantization workflow." attention_output_orig_quant_scale = self.attention_output_orig_quant_scale.value if self.attention_output_orig_quant_scale is not None else None context, past_key_value = gpt_attention( qkv=qkv, past_key_value=past_key_value, sequence_length=attention_params.sequence_length, host_past_key_value_lengths=kv_cache_params. host_past_key_value_lengths, host_max_attention_window_sizes=kv_cache_params. host_max_attention_window_sizes, host_sink_token_length=kv_cache_params.host_sink_token_length, context_lengths=attention_params.context_lengths, cache_indirection=kv_cache_params.cache_indirection, host_request_types=attention_params.host_request_types, layer_idx=self.local_layer_idx, num_heads=self.num_attention_heads, num_kv_heads=self.num_attention_kv_heads, hidden_size_per_head=self.attention_head_size, q_scaling=self.q_scaling, position_embedding_type=self.position_embedding_type, kv_orig_quant_scale=kv_orig_quant_scale, kv_quant_orig_scale=kv_quant_orig_scale, attention_output_orig_quant_scale= attention_output_orig_quant_scale, kv_cache_quant_mode=self.quant_mode, max_context_length=attention_params.max_context_length, mask_type=self.attention_mask_type, alibi_slopes=None, tp_size=self.tp_size, tp_rank=self.tp_rank, kv_cache_block_offsets=kv_cache_params.kv_cache_block_offsets, host_kv_cache_block_offsets=kv_cache_params. host_kv_cache_block_offsets, host_kv_cache_pool_pointers=kv_cache_params. host_kv_cache_pool_pointers, host_kv_cache_pool_mapping=kv_cache_params. host_kv_cache_pool_mapping, do_cross_attention=self.cross_attention, cross_kv=None, cross_kv_length=attention_params.encoder_max_input_length, encoder_input_lengths=attention_params.encoder_input_lengths, relative_attention_bias=self.rel_attn_table.value if self.relative_attention else None, max_distance=self.max_distance, host_context_lengths=attention_params.host_context_lengths, use_cache=use_cache, spec_decoding_position_offsets=None, spec_decoding_packed_mask=None, host_runtime_perf_knobs=attention_params. host_runtime_perf_knobs, host_context_progress=attention_params.host_context_progress, ) vision_dense = self.vis_dense(context) language_dense = self.dense(context) context = where(vision_token_mask, vision_dense, language_dense) if use_cache: return (context, past_key_value) else: return context