Source code for tensorrt_llm.layers.conv

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple

from ..functional import conv1d, conv2d, conv_transpose2d
from ..module import Module
from ..parameter import Parameter


[docs] class Conv2d(Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Tuple[int, int], stride: Tuple[int, int] = (1, 1), padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', # TODO: refine this type dtype=None) -> None: super().__init__() if groups <= 0: raise ValueError('groups must be a positive integer') if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.padding_mode = padding_mode self.weight = Parameter(shape=(out_channels, in_channels // groups, *kernel_size), dtype=dtype) if bias: self.bias = Parameter(shape=(out_channels, ), dtype=dtype) else: self.register_parameter('bias', None)
[docs] def forward(self, input): return conv2d(input, self.weight.value, None if self.bias is None else self.bias.value, self.stride, self.padding, self.dilation, self.groups)
[docs] class ConvTranspose2d(Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Tuple[int, int], stride: Tuple[int, int] = (1, 1), padding: Tuple[int, int] = (0, 0), output_padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', # TODO: refine this type dtype=None) -> None: super().__init__() if groups <= 0: raise ValueError('groups must be a positive integer') if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.output_padding = output_padding self.dilation = dilation self.groups = groups self.padding_mode = padding_mode self.weight = Parameter(shape=(in_channels, out_channels // groups, *kernel_size), dtype=dtype) if bias: self.bias = Parameter(shape=(out_channels, ), dtype=dtype) else: self.register_parameter('bias', None) def _output_padding(self, input, output_size, stride, padding, kernel_size, num_spatial_dims: int, dilation=None): if output_size is None: ret = self.output_padding else: has_batch_dim = input.dim() == num_spatial_dims + 2 num_non_spatial_dims = 2 if has_batch_dim else 1 if len(output_size) == num_non_spatial_dims + num_spatial_dims: output_size = output_size[num_non_spatial_dims:] if len(output_size) != num_spatial_dims: raise ValueError( "ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})" .format(num_spatial_dims, input.dim(), num_spatial_dims, num_non_spatial_dims + num_spatial_dims, len(output_size))) min_sizes = [] max_sizes = [] for d in range(num_spatial_dims): dim_size = ( (input.size(d + num_non_spatial_dims) - 1) * stride[d] - 2 * padding[d] + (dilation[d] if dilation is not None else 1) * (kernel_size[d] - 1) + 1) min_sizes.append(dim_size) max_sizes.append(min_sizes[d] + stride[d] - 1) for i in range(len(output_size)): size = output_size[i] min_size = min_sizes[i] max_size = max_sizes[i] if size < min_size or size > max_size: raise ValueError(( "requested an output size of {}, but valid sizes range " "from {} to {} (for an input of {})").format( output_size, min_sizes, max_sizes, input.size()[2:])) res = [] for d in range(num_spatial_dims): res.append(output_size[d] - min_sizes[d]) ret = res return ret
[docs] def forward(self, input, output_size=None): num_spatial_dims = 2 output_padding = self._output_padding(input, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation) return conv_transpose2d(input, self.weight.value, None if self.bias is None else self.bias.value, self.stride, self.padding, output_padding, self.dilation, self.groups)
[docs] class Conv1d(Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, padding: int = 0, dilation: int = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', # TODO: refine this type dtype=None) -> None: super().__init__() if groups <= 0: raise ValueError('groups must be a positive integer') if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.padding_mode = padding_mode self.weight = Parameter(shape=(out_channels, in_channels // groups, kernel_size, 1), dtype=dtype) if bias: self.bias = Parameter(shape=(out_channels, ), dtype=dtype) else: self.register_parameter('bias', None)
[docs] def forward(self, input): return conv1d(input, self.weight.value, None if self.bias is None else self.bias.value, self.stride, self.padding, self.dilation, self.groups)