Source code for tensorrt_llm.layers.mlp

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional

import tensorrt as trt

from .._common import default_net
from ..functional import (ACT2FN, AllReduceFusionParams, cast, concat,
                          gemm_swiglu, is_gated_activation)
from ..module import Module
from ..quantization import QuantMode
from ..quantization.functional import quantize
from ..quantization.layers import FP8Linear, FP8RowLinear
from .linear import ColumnLinear, RowLinear
from .lora import LoraRuntimeParams
from .normalization import LayerNorm


[docs] def fc_gate_lora(hidden_states, lora, lora_layer_params): if lora_layer_params is not None: mlp_fc_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_h_to_4h") mlp_gate_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_gate") if mlp_fc_lora_params is not None and mlp_gate_lora_params is not None: mlp_in_lora_params = LoraRuntimeParams( lora_ranks=[ mlp_fc_lora_params.lora_ranks[0], mlp_gate_lora_params.lora_ranks[0] ], lora_weights_pointers=[ mlp_fc_lora_params.lora_weights_pointers[0], mlp_gate_lora_params.lora_weights_pointers[0] ], host_request_types=mlp_fc_lora_params.host_request_types, host_context_lengths=mlp_fc_lora_params.host_context_lengths) mlp_fc_lora, mlp_gate_lora = lora(hidden_states, mlp_in_lora_params) mlp_in_result = concat([mlp_gate_lora, mlp_fc_lora], dim=mlp_fc_lora.rank() - 1) return mlp_in_result return None
[docs] class MLP(Module): def __init__( self, hidden_size, ffn_hidden_size, hidden_act, bias=True, dtype=None, tp_group=None, tp_size=1, quant_mode=QuantMode(0), inner_layernorm=False, eps=1e-05, is_expert=False, ): super().__init__() if hidden_act not in ACT2FN: raise ValueError( 'unsupported activation function: {}'.format(hidden_act)) fc_output_size = 2 * ffn_hidden_size if hidden_act in [ 'swiglu', 'gegelu' ] else ffn_hidden_size self.inner_layernorm = LayerNorm(ffn_hidden_size, dtype=dtype, eps=eps) if inner_layernorm else None self.fc = ColumnLinear(hidden_size, fc_output_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) self.proj = RowLinear(ffn_hidden_size, hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, is_expert=is_expert) self.hidden_size = hidden_size self.ffn_hidden_size = ffn_hidden_size self.hidden_act = hidden_act self.dtype = dtype self.bias = bias self.tp_group = tp_group self.tp_size = tp_size self.quant_mode = quant_mode self.eps = eps self.is_expert = is_expert # see optimize_model's add_lora for LoRA initialization self.lora = None
[docs] def forward(self, hidden_states, lora_layer_params=None, gegelu_limit=None): if is_gated_activation(self.hidden_act): inter = self.fc(hidden_states) lora_result = fc_gate_lora(hidden_states, self.lora, lora_layer_params) if lora_result is not None: inter = inter + lora_result else: mlp_fc_lora_params = None if lora_layer_params is not None: mlp_fc_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_h_to_4h") inter = self.fc(hidden_states, mlp_fc_lora_params) mlp_proj_lora_params = None if lora_layer_params is not None: mlp_proj_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_4h_to_h") if self.hidden_act == 'gegelu': inter = ACT2FN[self.hidden_act](inter, gegelu_limit) else: inter = ACT2FN[self.hidden_act](inter) if self.inner_layernorm is not None: inter = self.inner_layernorm(inter) output = self.proj(inter, lora_runtime_params=mlp_proj_lora_params) return output
[docs] class GatedMLP(MLP): def __init__( self, hidden_size, ffn_hidden_size, hidden_act, bias=True, dtype=None, tp_group=None, tp_size=1, quant_mode=QuantMode(0), inner_layernorm=False, eps=1e-05, is_expert=False, ): super().__init__(hidden_size, ffn_hidden_size, hidden_act, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, quant_mode=quant_mode, inner_layernorm=inner_layernorm, eps=eps, is_expert=is_expert) self.hidden_size = hidden_size self.ffn_hidden_size = ffn_hidden_size self.tp_group = tp_group self.tp_size = tp_size self.gate = ColumnLinear(hidden_size, ffn_hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False)
[docs] def forward(self, hidden_states, lora_layer_params=None, reduce_fusion_params: Optional[AllReduceFusionParams] = None): mlp_fc_lora_params = None if lora_layer_params is not None: mlp_fc_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_h_to_4h") mlp_gate_lora_params = None if lora_layer_params is not None: mlp_gate_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_gate") mlp_proj_lora_params = None if lora_layer_params is not None: mlp_proj_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_4h_to_h") inter = self.fc(hidden_states, mlp_fc_lora_params) inter = ACT2FN[self.hidden_act](inter) gate = self.gate(hidden_states, mlp_gate_lora_params) intermediate = inter * gate if self.inner_layernorm is not None: intermediate = self.inner_layernorm(intermediate) output = self.proj(intermediate, lora_runtime_params=mlp_proj_lora_params, reduce_fusion_params=reduce_fusion_params) return output
[docs] class FusedGatedMLP(Module): def __init__( self, hidden_size, ffn_hidden_size, hidden_act, bias=True, dtype=None, tp_group=None, tp_size=1, quant_mode=QuantMode(0), inner_layernorm=False, eps=1e-05, is_expert=False, ): super().__init__() self.hidden_size = hidden_size self.ffn_hidden_size = ffn_hidden_size self.hidden_act = hidden_act self.bias = bias self.dtype = dtype self.tp_group = tp_group self.tp_size = tp_size self.quant_mode = quant_mode self.fused_fc = ColumnLinear( self.hidden_size, self.ffn_hidden_size * 2, bias=self.bias, dtype=self.dtype, tp_group=self.tp_group, tp_size=self.tp_size, gather_output=False, ) self.inner_layernorm = LayerNorm(ffn_hidden_size, dtype=dtype, eps=eps) if inner_layernorm else None self.proj = RowLinear(ffn_hidden_size, hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, is_expert=is_expert) # see optimize_model's add_lora for LoRA initialization self.lora = None
[docs] def fc_gate_plugin(self, hidden_states, lora_layer_params=None): # Combine the following pattern # # SiLU(FC(x)) * Gate(x) # # into: # # SwiGLU(FusedFC(x)) p_dtype = default_net().plugin_config.gemm_swiglu_plugin use_fp8 = p_dtype == 'fp8' assert use_fp8, "gemm_swiglu_plugin only supports fp8 now" if lora_layer_params is not None: mlp_fc_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_h_to_4h") mlp_gate_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_gate") if mlp_fc_lora_params is not None or mlp_gate_lora_params is not None: raise NotImplementedError( f"LoRA not yet implemented for gemm_swiglu_plugin") if self.hidden_act != 'silu': raise NotImplementedError( f"Activation {self.hidden_act} not yet implemented for gemm_swiglu_plugin" ) if self.bias: raise NotImplementedError( f"bias not yet implemented for gemm_swiglu_plugin fp8") assert isinstance( self.fused_fc, FP8Linear), "fp8 gemm_swiglu only supports fp8 weights" assert isinstance( self.proj, FP8RowLinear), "fp8 gemm_swiglu only supports fp8 weights" assert self.fused_fc.weight.shape == ( self.hidden_size, self.ffn_hidden_size * 2 // self.tp_size), "fp8 gemm_swiglu only supports (k, n) weights" scale_d0 = (self.fused_fc.weights_scaling_factor.raw_value.item() * self.fused_fc.activation_scaling_factor.raw_value.item()) scale_d1 = scale_d0 scale_output = 1.0 / self.proj.activation_scaling_factor.raw_value.item( ) activation_scaling_factor = cast( self.fused_fc.activation_scaling_factor.value, self.dtype) if hidden_states.dtype != trt.fp8: hidden_states = quantize(hidden_states, activation_scaling_factor, 'fp8') inter = gemm_swiglu(hidden_states, self.fused_fc.weight.value, None, scale_d0, scale_d1, scale_output) return inter
[docs] def fc_gate(self, hidden_states, lora_layer_params=None): # Combine the following pattern # # SiLU(FC(x)) * Gate(x) # # into: # # SwiGLU(FusedFC(x)) # # Upside is we don't need to modify 4 different weight loading paths just to concat weights inter = self.fused_fc(hidden_states) lora_result = fc_gate_lora(hidden_states, self.lora, lora_layer_params) if lora_result is not None: inter = inter + lora_result if self.hidden_act == 'silu': inter = ACT2FN['swiglu'](inter) elif self.hidden_act == 'gelu': inter = ACT2FN['geglu'](inter) else: raise NotImplementedError( f"Activation {self.hidden_act} not yet implemented for {self.__class__.__name__}." ) return inter
[docs] def forward(self, hidden_states, lora_layer_params=None, reduce_fusion_params: Optional[AllReduceFusionParams] = None): if default_net().plugin_config.gemm_swiglu_plugin: inter = self.fc_gate_plugin(hidden_states, lora_layer_params) else: inter = self.fc_gate(hidden_states, lora_layer_params) if self.inner_layernorm is not None: inter = self.inner_layernorm(inter) mlp_proj_lora_params = None if lora_layer_params is not None: mlp_proj_lora_params = lora_layer_params.get_runtime_params( 0, "mlp_4h_to_h") output = self.proj(inter, lora_runtime_params=mlp_proj_lora_params, reduce_fusion_params=reduce_fusion_params) return output