# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import tensorrt as trt
from .._common import default_net
from ..functional import (ACT2FN, AllReduceFusionParams, cast, concat,
gemm_swiglu, is_gated_activation)
from ..module import Module
from ..quantization import QuantMode
from ..quantization.functional import quantize
from ..quantization.layers import FP8Linear, FP8RowLinear
from .linear import ColumnLinear, RowLinear
from .lora import LoraRuntimeParams
from .normalization import LayerNorm
[docs]
def fc_gate_lora(hidden_states, lora, lora_layer_params):
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_gate")
if mlp_fc_lora_params is not None and mlp_gate_lora_params is not None:
mlp_in_lora_params = LoraRuntimeParams(
lora_ranks=[
mlp_fc_lora_params.lora_ranks[0],
mlp_gate_lora_params.lora_ranks[0]
],
lora_weights_pointers=[
mlp_fc_lora_params.lora_weights_pointers[0],
mlp_gate_lora_params.lora_weights_pointers[0]
],
host_request_types=mlp_fc_lora_params.host_request_types,
host_context_lengths=mlp_fc_lora_params.host_context_lengths)
mlp_fc_lora, mlp_gate_lora = lora(hidden_states, mlp_in_lora_params)
mlp_in_result = concat([mlp_gate_lora, mlp_fc_lora],
dim=mlp_fc_lora.rank() - 1)
return mlp_in_result
return None
[docs]
class MLP(Module):
def __init__(
self,
hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0),
inner_layernorm=False,
eps=1e-05,
is_expert=False,
):
super().__init__()
if hidden_act not in ACT2FN:
raise ValueError(
'unsupported activation function: {}'.format(hidden_act))
fc_output_size = 2 * ffn_hidden_size if hidden_act in [
'swiglu', 'gegelu'
] else ffn_hidden_size
self.inner_layernorm = LayerNorm(ffn_hidden_size, dtype=dtype,
eps=eps) if inner_layernorm else None
self.fc = ColumnLinear(hidden_size,
fc_output_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.proj = RowLinear(ffn_hidden_size,
hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
is_expert=is_expert)
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.hidden_act = hidden_act
self.dtype = dtype
self.bias = bias
self.tp_group = tp_group
self.tp_size = tp_size
self.quant_mode = quant_mode
self.eps = eps
self.is_expert = is_expert
# see optimize_model's add_lora for LoRA initialization
self.lora = None
[docs]
def forward(self, hidden_states, lora_layer_params=None, gegelu_limit=None):
if is_gated_activation(self.hidden_act):
inter = self.fc(hidden_states)
lora_result = fc_gate_lora(hidden_states, self.lora,
lora_layer_params)
if lora_result is not None:
inter = inter + lora_result
else:
mlp_fc_lora_params = None
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
inter = self.fc(hidden_states, mlp_fc_lora_params)
mlp_proj_lora_params = None
if lora_layer_params is not None:
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_4h_to_h")
if self.hidden_act == 'gegelu':
inter = ACT2FN[self.hidden_act](inter, gegelu_limit)
else:
inter = ACT2FN[self.hidden_act](inter)
if self.inner_layernorm is not None:
inter = self.inner_layernorm(inter)
output = self.proj(inter, lora_runtime_params=mlp_proj_lora_params)
return output
[docs]
class GatedMLP(MLP):
def __init__(
self,
hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0),
inner_layernorm=False,
eps=1e-05,
is_expert=False,
):
super().__init__(hidden_size,
ffn_hidden_size,
hidden_act,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=quant_mode,
inner_layernorm=inner_layernorm,
eps=eps,
is_expert=is_expert)
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.tp_group = tp_group
self.tp_size = tp_size
self.gate = ColumnLinear(hidden_size,
ffn_hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
[docs]
def forward(self,
hidden_states,
lora_layer_params=None,
reduce_fusion_params: Optional[AllReduceFusionParams] = None):
mlp_fc_lora_params = None
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_gate_lora_params = None
if lora_layer_params is not None:
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_gate")
mlp_proj_lora_params = None
if lora_layer_params is not None:
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_4h_to_h")
inter = self.fc(hidden_states, mlp_fc_lora_params)
inter = ACT2FN[self.hidden_act](inter)
gate = self.gate(hidden_states, mlp_gate_lora_params)
intermediate = inter * gate
if self.inner_layernorm is not None:
intermediate = self.inner_layernorm(intermediate)
output = self.proj(intermediate,
lora_runtime_params=mlp_proj_lora_params,
reduce_fusion_params=reduce_fusion_params)
return output
[docs]
class FusedGatedMLP(Module):
def __init__(
self,
hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0),
inner_layernorm=False,
eps=1e-05,
is_expert=False,
):
super().__init__()
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.hidden_act = hidden_act
self.bias = bias
self.dtype = dtype
self.tp_group = tp_group
self.tp_size = tp_size
self.quant_mode = quant_mode
self.fused_fc = ColumnLinear(
self.hidden_size,
self.ffn_hidden_size * 2,
bias=self.bias,
dtype=self.dtype,
tp_group=self.tp_group,
tp_size=self.tp_size,
gather_output=False,
)
self.inner_layernorm = LayerNorm(ffn_hidden_size, dtype=dtype,
eps=eps) if inner_layernorm else None
self.proj = RowLinear(ffn_hidden_size,
hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
is_expert=is_expert)
# see optimize_model's add_lora for LoRA initialization
self.lora = None
[docs]
def fc_gate_plugin(self, hidden_states, lora_layer_params=None):
# Combine the following pattern
#
# SiLU(FC(x)) * Gate(x)
#
# into:
#
# SwiGLU(FusedFC(x))
p_dtype = default_net().plugin_config.gemm_swiglu_plugin
use_fp8 = p_dtype == 'fp8'
assert use_fp8, "gemm_swiglu_plugin only supports fp8 now"
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_gate")
if mlp_fc_lora_params is not None or mlp_gate_lora_params is not None:
raise NotImplementedError(
f"LoRA not yet implemented for gemm_swiglu_plugin")
if self.hidden_act != 'silu':
raise NotImplementedError(
f"Activation {self.hidden_act} not yet implemented for gemm_swiglu_plugin"
)
if self.bias:
raise NotImplementedError(
f"bias not yet implemented for gemm_swiglu_plugin fp8")
assert isinstance(
self.fused_fc,
FP8Linear), "fp8 gemm_swiglu only supports fp8 weights"
assert isinstance(
self.proj,
FP8RowLinear), "fp8 gemm_swiglu only supports fp8 weights"
assert self.fused_fc.weight.shape == (
self.hidden_size, self.ffn_hidden_size * 2 //
self.tp_size), "fp8 gemm_swiglu only supports (k, n) weights"
scale_d0 = (self.fused_fc.weights_scaling_factor.raw_value.item() *
self.fused_fc.activation_scaling_factor.raw_value.item())
scale_d1 = scale_d0
scale_output = 1.0 / self.proj.activation_scaling_factor.raw_value.item(
)
activation_scaling_factor = cast(
self.fused_fc.activation_scaling_factor.value, self.dtype)
if hidden_states.dtype != trt.fp8:
hidden_states = quantize(hidden_states, activation_scaling_factor,
'fp8')
inter = gemm_swiglu(hidden_states, self.fused_fc.weight.value, None,
scale_d0, scale_d1, scale_output)
return inter
[docs]
def fc_gate(self, hidden_states, lora_layer_params=None):
# Combine the following pattern
#
# SiLU(FC(x)) * Gate(x)
#
# into:
#
# SwiGLU(FusedFC(x))
#
# Upside is we don't need to modify 4 different weight loading paths just to concat weights
inter = self.fused_fc(hidden_states)
lora_result = fc_gate_lora(hidden_states, self.lora, lora_layer_params)
if lora_result is not None:
inter = inter + lora_result
if self.hidden_act == 'silu':
inter = ACT2FN['swiglu'](inter)
elif self.hidden_act == 'gelu':
inter = ACT2FN['geglu'](inter)
else:
raise NotImplementedError(
f"Activation {self.hidden_act} not yet implemented for {self.__class__.__name__}."
)
return inter
[docs]
def forward(self,
hidden_states,
lora_layer_params=None,
reduce_fusion_params: Optional[AllReduceFusionParams] = None):
if default_net().plugin_config.gemm_swiglu_plugin:
inter = self.fc_gate_plugin(hidden_states, lora_layer_params)
else:
inter = self.fc_gate(hidden_states, lora_layer_params)
if self.inner_layernorm is not None:
inter = self.inner_layernorm(inter)
mlp_proj_lora_params = None
if lora_layer_params is not None:
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_4h_to_h")
output = self.proj(inter,
lora_runtime_params=mlp_proj_lora_params,
reduce_fusion_params=reduce_fusion_params)
return output