Source code for tensorrt_llm.llmapi.build_cache

import contextlib
import datetime
import enum
import hashlib
import json
import os
import shutil
from dataclasses import dataclass
from pathlib import Path
from typing import Any, List, Optional

import filelock

import tensorrt_llm
from tensorrt_llm import BuildConfig
from tensorrt_llm.llmapi.utils import enable_llm_debug, print_colored
from tensorrt_llm.logger import logger


def get_build_cache_config_from_env() -> tuple[bool, str]:
    """
    Get the build cache configuration from the environment variables
    """
    build_cache_enabled = os.environ.get('TLLM_LLMAPI_BUILD_CACHE') == '1'
    build_cache_root = os.environ.get(
        'TLLM_LLMAPI_BUILD_CACHE_ROOT',
        '/tmp/.cache/tensorrt_llm/llmapi/')  # nosec B108
    return build_cache_enabled, build_cache_root


[docs] class BuildCacheConfig: """ Configuration for the build cache. Attributes: cache_root (str): The root directory for the build cache. max_records (int): The maximum number of records to store in the cache. max_cache_storage_gb (float): The maximum amount of storage (in GB) to use for the cache. Note: The build-cache assumes the weights of the model are not changed during the execution. If the weights are changed, you should remove the caches manually. """
[docs] def __init__(self, cache_root: Optional[Path] = None, max_records: int = 10, max_cache_storage_gb: float = 256): self._cache_root = cache_root self._max_records = max_records self._max_cache_storage_gb = max_cache_storage_gb
@property def cache_root(self) -> Path: _build_cache_enabled, _build_cache_root = get_build_cache_config_from_env( ) return self._cache_root or Path(_build_cache_root) @property def max_records(self) -> int: return self._max_records @property def max_cache_storage_gb(self) -> float: return self._max_cache_storage_gb
class BuildCache: """ The BuildCache class is a class that manages the intermediate products from the build steps. NOTE: currently, only engine-building is supported TODO[chunweiy]: add support for other build steps, such as quantization, convert_checkpoint, etc. """ # The version of the cache, will be used to determine if the cache is compatible CACHE_VERSION = 0 def __init__(self, config: Optional[BuildCacheConfig] = None): _, default_cache_root = get_build_cache_config_from_env() config = config or BuildCacheConfig() self.cache_root = config.cache_root or Path(default_cache_root) self.max_records = config.max_records self.max_cache_storage_gb = config.max_cache_storage_gb if config.max_records < 1: raise ValueError("max_records should be greater than 0") def free_storage_in_gb(self) -> float: ''' Get the free storage capacity of the cache. ''' # measure the root directory if self.cache_root.parent.exists(): usage = shutil.disk_usage(self.cache_root.parent) return usage.free / 1024**3 return 0 def get_engine_building_cache_stage(self, build_config: BuildConfig, model_path: Optional[Path] = None, force_rebuild: bool = False, **kwargs) -> 'CachedStage': ''' Get the build step for engine building. ''' build_config_str = json.dumps(self.prune_build_config_for_cache_key( build_config.to_dict()), sort_keys=True) kwargs_str = json.dumps(kwargs, sort_keys=True) return CachedStage(parent=self, kind=CacheRecord.Kind.Engine, cache_root=self.cache_root, force_rebuild=force_rebuild, inputs=[build_config_str, model_path, kwargs_str]) def prune_caches(self, has_incoming_record: bool = False): ''' Clean up the cache records to make sure the cache size is within the limit Args: has_incoming_record (bool): If the cache has incoming record, the existing records will be further pruned to reserve space for the incoming record ''' if not self.cache_root.exists(): return self._clean_up_cache_dir() records = [] for dir in self.cache_root.iterdir(): records.append(self._load_cache_record(dir)) records.sort(key=lambda x: x.time, reverse=True) max_records = self.max_records - 1 if has_incoming_record else self.max_records # prune the cache to meet max_records and max_cache_storage_gb limitation while len(records) > max_records or sum( r.storage_gb for r in records) > self.max_cache_storage_gb: record = records.pop() # remove the directory and its content shutil.rmtree(record.path) @staticmethod def prune_build_config_for_cache_key(build_config: dict) -> dict: # The BuildCache will be disabled once auto_pp is enabled, so 'auto_parallel_config' should be removed black_list = ['auto_parallel_config', 'dry_run'] dic = build_config.copy() for key in black_list: if key in dic: dic.pop(key) return dic def load_cache_records(self) -> List["CacheRecord"]: ''' Load all the cache records from the cache directory ''' records = [] if not self.cache_root.exists(): return records for dir in self.cache_root.iterdir(): records.append(self._load_cache_record(dir)) return records def _load_cache_record(self, cache_dir) -> "CacheRecord": ''' Get the cache record from the cache directory ''' metadata = json.loads((cache_dir / 'metadata.json').read_text()) storage_gb = sum(f.stat().st_size for f in cache_dir.glob('**/*') if f.is_file()) / 1024**3 return CacheRecord(kind=CacheRecord.Kind.__members__[metadata['kind']], storage_gb=storage_gb, path=cache_dir, time=datetime.datetime.fromisoformat( metadata['datetime'])) def _clean_up_cache_dir(self): ''' Clean up the files in the cache directory, remove anything that is not in the cache ''' # get all the files and directies in the cache_root if not self.cache_root.exists(): return for file_or_dir in self.cache_root.iterdir(): if not self.is_cache_valid(file_or_dir): logger.info(f"Removing invalid cache directory {dir}") if file_or_dir.is_file(): file_or_dir.unlink() else: shutil.rmtree(file_or_dir) def is_cache_valid(self, cache_dir: Path) -> bool: ''' Check if the cache directory is valid ''' if not cache_dir.exists(): return False metadata_path = cache_dir / 'metadata.json' if not metadata_path.exists(): return False metadata = json.loads(metadata_path.read_text()) if metadata.get('version') != BuildCache.CACHE_VERSION: return False content = cache_dir / 'content' if not content.exists(): return False return True @dataclass class CachedStage: ''' CachedStage is a class that represents a stage in the build process, it helps to manage the intermediate product. The cache is organized as follows: this_cache_dir/ # name is like "engine-<hash>" metadata.json # the metadata of the cache content/ # the actual product of the build step, such trt-llm engine directory ''' # The parent should be kept alive by CachedStep instance parent: BuildCache cache_root: Path # The inputs will be used to determine if the step needs to be re-run, so all the variables should be put here inputs: List[Any] kind: "CacheRecord.Kind" # If force_rebuild is set to True, the cache will be ignored force_rebuild: bool = False def get_hash_key(self): lib_version = tensorrt_llm.__version__ input_strs = [str(i) for i in self.inputs] return hashlib.md5( f"{lib_version}-{input_strs}".encode()).hexdigest() # nosec B324 def get_cache_path(self) -> Path: ''' The path to the product of the build step, will be overwritten if the step is re-run ''' return self.cache_root / f"{self.kind.value}-{self.get_hash_key()}" def get_engine_path(self) -> Path: return self.get_cache_path() / 'content' def get_cache_metadata(self) -> dict: res = { "version": BuildCache.CACHE_VERSION, "datetime": datetime.datetime.now().isoformat(), "kind": self.kind.name, } return res def is_cached(self) -> bool: ''' Check if the product of the build step is in the cache ''' if self.force_rebuild: return False try: if self.get_cache_path().exists(): metadata = json.loads( (self.get_cache_path() / 'metadata.json').read_text()) if metadata["version"] == BuildCache.CACHE_VERSION: return True except: pass return False @contextlib.contextmanager def write_guard(self): ''' Guard the cache writing process. The cache writing process should be atomic, so the filelock is used to protect the cache writing process. And the cache metadata will be written to the cache directory. Args: final_engien_dir: the final engine directory ''' self.parent.prune_caches(has_incoming_record=True) target_dir = self.get_cache_path() if enable_llm_debug(): print_colored(f"Writing cache to {target_dir}\n", "yellow") # To avoid the cache modification conflict, a dummy directory is used to write the cache, and then rename it to # the target directory dummy_target_dir = Path(f"{target_dir.parent}/{target_dir.name}.dummy") dummy_target_dir.mkdir(parents=True, exist_ok=True) # TODO[chunweiy]: deal with the cache modification conflict lock = filelock.FileLock(dummy_target_dir / '.filelock', timeout=10) with open(dummy_target_dir / 'metadata.json', 'w') as f: f.write(json.dumps(self.get_cache_metadata())) with lock: yield dummy_target_dir / 'content' # If engine building is successful, rename the dummy directory to the target directory if target_dir.exists(): shutil.rmtree(target_dir) shutil.move(dummy_target_dir, target_dir) @dataclass(unsafe_hash=True) class CacheRecord: ''' CacheRecord is a class that represents a record in the cache directory. ''' class Kind(enum.Enum): Engine = 'engine' Checkpoint = 'checkpoint' kind: Kind storage_gb: float path: Path time: datetime.datetime