Source code for tensorrt_llm.models.bert.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import numpy as np

from ..._common import default_net
from ...functional import (ACT2FN, bert_attention, cast, concat, constant,
                           cumsum, expand, expand_mask, index_select, matmul,
                           select, shape, slice, softmax, split, unsqueeze)
from ...layers import MLP, ColumnLinear, Embedding, LayerNorm, Linear, RowLinear
from ...mapping import Mapping
from ...module import Module, ModuleList


class BertEmbedding(Module):

    def __init__(self,
                 vocab_size,
                 hidden_size,
                 max_position_embeddings,
                 type_vocab_size,
                 dtype=None):
        super().__init__()
        self.vocab_embedding = Embedding(vocab_size, hidden_size, dtype=dtype)
        self.position_embedding = Embedding(max_position_embeddings,
                                            hidden_size,
                                            dtype=dtype)
        self.token_embedding = Embedding(type_vocab_size,
                                         hidden_size,
                                         dtype=dtype)
        self.max_position_embeddings = max_position_embeddings

        self.embedding_ln = LayerNorm(normalized_shape=hidden_size, dtype=dtype)

    def forward(self, input_ids, position_ids, token_type_ids):
        x = self.vocab_embedding(input_ids)
        x = x + self.position_embedding(position_ids)
        x = x + self.token_embedding(token_type_ids)
        x = self.embedding_ln(x)
        return x


class BertAttention(Module):

    def __init__(self,
                 hidden_size,
                 num_attention_heads,
                 max_position_embeddings,
                 dtype=None,
                 tp_group=None,
                 tp_size=1):
        super().__init__()

        self.attention_head_size = hidden_size // num_attention_heads
        self.num_attention_heads = num_attention_heads // tp_size
        self.hidden_size = hidden_size // tp_size
        self.max_position_embeddings = max_position_embeddings
        self.norm_factor = math.sqrt(self.attention_head_size)

        self.qkv = ColumnLinear(hidden_size,
                                hidden_size * 3,
                                dtype=dtype,
                                tp_group=tp_group,
                                tp_size=tp_size,
                                gather_output=False)
        self.dense = RowLinear(hidden_size,
                               hidden_size,
                               dtype=dtype,
                               tp_group=tp_group,
                               tp_size=tp_size)

    def forward(self,
                hidden_states,
                attention_mask=None,
                input_lengths=None,
                max_input_length=None):
        qkv = self.qkv(hidden_states)

        # attention
        if default_net().plugin_config.bert_attention_plugin:
            assert input_lengths is not None
            context = bert_attention(qkv,
                                     input_lengths,
                                     self.num_attention_heads,
                                     self.attention_head_size,
                                     q_scaling=1.0,
                                     max_input_length=max_input_length)
        else:
            assert not default_net().plugin_config.remove_input_padding, \
                   "remove_input_padding requires bert_attention_plugin enabled"

            def transpose_for_scores(x):
                new_x_shape = concat([
                    shape(x, 0),
                    shape(x, 1), self.num_attention_heads,
                    self.attention_head_size
                ])
                return x.view(new_x_shape).permute([0, 2, 1, 3])

            query, key, value = split(qkv, self.hidden_size, dim=2)
            query = transpose_for_scores(query)
            key = transpose_for_scores(key)
            value = transpose_for_scores(value)

            key = key.permute([0, 1, 3, 2])
            attention_scores = matmul(query, key)
            attention_scores = attention_scores / self.norm_factor

            if attention_mask is not None:
                attention_mask = cast(attention_mask, attention_scores.dtype)
                attention_scores = attention_scores + attention_mask

            attention_probs = softmax(attention_scores, dim=-1)

            context = matmul(attention_probs, value,
                             use_fp32_acc=False).permute([0, 2, 1, 3])
            context = context.view(
                concat([shape(context, 0),
                        shape(context, 1), self.hidden_size]))

        context = self.dense(context)

        return context


class BertEncoderLayer(Module):

    def __init__(self,
                 hidden_size,
                 num_attention_heads,
                 max_position_embeddings,
                 hidden_act='relu',
                 tp_group=None,
                 tp_size=1,
                 dtype=None):
        super().__init__()
        self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
                                         dtype=dtype)

        self.attention = BertAttention(hidden_size,
                                       num_attention_heads,
                                       max_position_embeddings,
                                       tp_group=tp_group,
                                       tp_size=tp_size,
                                       dtype=dtype)
        self.mlp = MLP(hidden_size=hidden_size,
                       ffn_hidden_size=hidden_size * 4,
                       hidden_act=hidden_act,
                       tp_group=tp_group,
                       tp_size=tp_size,
                       dtype=dtype)
        self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
                                        dtype=dtype)

    def forward(self,
                hidden_states,
                attention_mask=None,
                input_lengths=None,
                max_input_length=None):
        residual = hidden_states

        attention_output = self.attention(hidden_states,
                                          attention_mask=attention_mask,
                                          input_lengths=input_lengths,
                                          max_input_length=max_input_length)

        hidden_states = residual + attention_output

        hidden_states = self.input_layernorm(hidden_states)

        residual = hidden_states

        hidden_states = self.mlp(hidden_states)

        hidden_states = residual + hidden_states

        hidden_states = self.post_layernorm(hidden_states)

        return hidden_states


[docs] class BertModel(Module): def __init__(self, num_layers, num_heads, hidden_size, vocab_size, hidden_act, max_position_embeddings, type_vocab_size, pad_token_id=None, is_roberta=False, mapping=Mapping(), dtype=None): super().__init__() self.max_position_embeddings = max_position_embeddings self.padding_idx = pad_token_id self.is_roberta = is_roberta self.embedding = BertEmbedding( vocab_size=vocab_size, hidden_size=hidden_size, max_position_embeddings=max_position_embeddings, type_vocab_size=type_vocab_size, dtype=dtype) self.layers = ModuleList([ BertEncoderLayer(hidden_size=hidden_size, num_attention_heads=num_heads, max_position_embeddings=max_position_embeddings, hidden_act=hidden_act, tp_group=mapping.tp_group, tp_size=mapping.tp_size, dtype=dtype) for _ in range(num_layers) ])
[docs] def forward(self, input_ids=None, input_lengths=None, position_ids=None, token_type_ids=None, hidden_states=None, max_input_length=None): # remove_input_padding requires these fields as explicit input extended_attention_mask = None if not default_net().plugin_config.remove_input_padding: seq_len_2d = concat([1, shape(input_ids, 1)]) # create position ids position_ids_buffer = constant( np.expand_dims( np.arange(self.max_position_embeddings).astype(np.int32), 0)) tmp_position_ids = slice(position_ids_buffer, starts=[0, 0], sizes=seq_len_2d) tmp_position_ids = expand(tmp_position_ids, shape(input_ids)) #BxL tmp_input_lengths = unsqueeze(input_lengths, 1) #Bx1 tmp_input_lengths = expand(tmp_input_lengths, shape(input_ids)) #BxL mask = tmp_position_ids < tmp_input_lengths # BxL mask = mask.cast('int32') if position_ids is None: if self.is_roberta: # see create_position_ids_from_input_ids() in https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py position_ids = (tmp_position_ids + 1) * mask position_ids = position_ids + self.padding_idx else: position_ids = slice(position_ids_buffer, starts=[0, 0], sizes=seq_len_2d) position_ids = expand(position_ids, shape(input_ids)) # create extended_attention_mask as https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py extended_attention_mask = expand_mask(mask, tgt_len=1) # BxL -> Bx1x1xL # create token_type_ids if token_type_ids is None: token_type_ids_buffer = constant( np.expand_dims( np.zeros(self.max_position_embeddings).astype(np.int32), 0)) token_type_ids = slice(token_type_ids_buffer, starts=[0, 0], sizes=seq_len_2d) token_type_ids = expand(token_type_ids, shape(input_ids)) hidden_states = self.embedding(input_ids, position_ids, token_type_ids) for layer in self.layers: hidden_states = layer(hidden_states=hidden_states, input_lengths=input_lengths, attention_mask=extended_attention_mask, max_input_length=max_input_length) return hidden_states
[docs] class BertForQuestionAnswering(Module): def __init__(self, num_layers, num_heads, hidden_size, vocab_size, hidden_act, max_position_embeddings, type_vocab_size, pad_token_id=None, is_roberta=False, num_labels=2, mapping=Mapping(), dtype=None): super().__init__() self.bert = BertModel(num_layers=num_layers, num_heads=num_heads, hidden_size=hidden_size, vocab_size=vocab_size, hidden_act=hidden_act, max_position_embeddings=max_position_embeddings, type_vocab_size=type_vocab_size, pad_token_id=pad_token_id, is_roberta=is_roberta, mapping=mapping, dtype=dtype) self.num_labels = num_labels self.qa_outputs = Linear(hidden_size, num_labels, dtype=dtype)
[docs] def forward(self, input_ids=None, input_lengths=None, token_type_ids=None, position_ids=None, hidden_states=None): hidden_states = self.bert.forward(input_ids=input_ids, input_lengths=input_lengths, token_type_ids=token_type_ids, position_ids=position_ids, hidden_states=hidden_states) logits = self.qa_outputs(hidden_states) return logits
class BertPooler(Module): def __init__(self, hidden_size, dtype): super().__init__() self.dense = Linear(hidden_size, hidden_size, dtype=dtype) self.activation = ACT2FN['tanh'] def forward(self, hidden_states, input_lengths, remove_input_padding): if not remove_input_padding: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = select(hidden_states, 1, 0) else: # when remove_input_padding is enabled, the shape of hidden_states is [num_tokens, hidden_size] # We can take the first token of each sequence according to input_lengths, # and then do pooling similar to padding mode. # For example, if input_lengths is [8, 5, 6], then the indices of first tokens # should be [0, 8, 13] first_token_indices = cumsum( concat([ 0, slice(input_lengths, starts=[0], sizes=(shape(input_lengths) - constant(np.array([1], dtype=np.int32)))) ]), 0) first_token_tensor = index_select(hidden_states, 0, first_token_indices) pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class RobertaClassificationHead(Module): """Head for sentence-level classification tasks.""" def __init__(self, hidden_size, dtype, num_labels): super().__init__() self.dense = Linear(hidden_size, hidden_size, dtype=dtype) self.out_proj = Linear(hidden_size, num_labels) def forward(self, features, **kwargs): x = select(features, 1, 0) x = self.dense(x) x = ACT2FN['tanh'](x) x = self.out_proj(x) return x
[docs] class BertForSequenceClassification(Module): def __init__(self, num_layers, num_heads, hidden_size, vocab_size, hidden_act, max_position_embeddings, type_vocab_size, pad_token_id=None, is_roberta=False, num_labels=2, mapping=Mapping(), dtype=None): super().__init__() self.is_roberta = is_roberta self.bert = BertModel(num_layers=num_layers, num_heads=num_heads, hidden_size=hidden_size, vocab_size=vocab_size, hidden_act=hidden_act, max_position_embeddings=max_position_embeddings, type_vocab_size=type_vocab_size, pad_token_id=pad_token_id, is_roberta=is_roberta, mapping=mapping, dtype=dtype) self.num_labels = num_labels if not is_roberta: self.pooler = BertPooler(hidden_size=hidden_size, dtype=dtype) self.classifier = Linear(hidden_size, num_labels, dtype=dtype) else: self.classifier = RobertaClassificationHead(hidden_size=hidden_size, num_labels=num_labels, dtype=dtype)
[docs] def forward(self, input_ids, input_lengths, token_type_ids=None, position_ids=None, hidden_states=None, max_input_length=None): remove_input_padding = default_net().plugin_config.remove_input_padding # required as explicit input in remove_input_padding mode # see examples/bert/run_remove_input_padding.py for how to create them from input_ids and input_lengths if remove_input_padding: assert token_type_ids is not None and \ position_ids is not None and \ max_input_length is not None, \ "token_type_ids, position_ids, max_input_length is required " \ "in remove_input_padding mode" hidden_states = self.bert.forward(input_ids=input_ids, input_lengths=input_lengths, token_type_ids=token_type_ids, position_ids=position_ids, hidden_states=hidden_states, max_input_length=max_input_length) if not self.is_roberta: pooled_output = self.pooler( hidden_states=hidden_states, input_lengths=input_lengths, remove_input_padding=remove_input_padding) logits = self.classifier(pooled_output) else: logits = self.classifier(hidden_states) return logits