# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
from ..._utils import torch_dtype_to_str
from ...mapping import Mapping
from ..modeling_utils import PretrainedConfig, QuantConfig
GLM_VERSIONS = ['glm4', 'chatglm3', 'chatglm2', 'chatglm', 'glm']
GLM_ARCH1_VERSIONS = ['chatglm', 'glm']
GLM_ARCH2_VERSIONS = ['glm4', 'chatglm3', 'chatglm2']
[docs]
class ChatGLMConfig(PretrainedConfig):
def __init__(self,
*,
chatglm_version: str = 'chatglm3',
add_bias_linear: bool = False,
add_qkv_bias: bool = True,
apply_query_key_layer_scaling: bool = False,
apply_residual_connection_post_layernorm: bool = False,
rmsnorm: bool = True,
rotary_pct: float = 0.5,
rotary_base: float = 10000.0,
rotary_scaling: Optional[dict] = None,
**kwargs):
self.chatglm_version = chatglm_version
self.add_bias_linear = add_bias_linear
self.add_qkv_bias = add_qkv_bias
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
self.rmsnorm = rmsnorm
self.rotary_pct = rotary_pct
self.rotary_base = rotary_base
self.rotary_scaling = rotary_scaling
super().__init__(**kwargs)
[docs]
def to_dict(self):
output = super().to_dict()
# Serialize the fields added in ChatGLMConfig
output['chatglm_version'] = self.chatglm_version
output['add_bias_linear'] = self.add_bias_linear
output['add_qkv_bias'] = self.add_qkv_bias
output[
'apply_query_key_layer_scaling'] = self.apply_query_key_layer_scaling
output[
'apply_residual_connection_post_layernorm'] = self.apply_residual_connection_post_layernorm
output['rmsnorm'] = self.rmsnorm
output['rotary_pct'] = self.rotary_pct
output['rotary_base'] = self.rotary_base
output['rotary_scaling'] = self.rotary_scaling
return output
[docs]
@classmethod
def from_hugging_face(
cls,
hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
import transformers
trust_remote_code = kwargs.pop('trust_remote_code', True)
# load hugging face config
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
hf_config = hf_config_or_dir
else:
hf_config_dir = str(hf_config_or_dir)
hf_config = transformers.AutoConfig.from_pretrained(
hf_config_dir, trust_remote_code=trust_remote_code)
logits_dtype = kwargs.pop('logits_dtype', 'float32')
use_parallel_embedding = kwargs.pop('use_parallel_embedding', False)
embedding_sharding_dim = kwargs.pop('embedding_sharding_dim', 0)
share_embedding_table = kwargs.pop('share_embedding_table', False)
chatglm_version = kwargs.pop('chatglm_version', None)
# get chatglm version
if chatglm_version is None:
print("Inferring chatglm version from path...")
for v in GLM_VERSIONS:
if v in hf_config._name_or_path:
chatglm_version = v
break
if 'glm_4' in hf_config._name_or_path.replace("-", "_"):
chatglm_version = 'glm4'
assert chatglm_version in GLM_VERSIONS
print(f"Chatglm version: {chatglm_version}")
if chatglm_version == 'glm':
hf_config.num_kv_heads = hf_config.num_attention_heads
hf_config.ffn_hidden_size = hf_config.hidden_size * 4
hf_config.hidden_act = 'gelu'
hf_config.layernorm_epsilon = 1e-5
hf_config.max_position_embeddings = hf_config.max_sequence_length
hf_config.add_bias_linear = True
hf_config.add_qkv_bias = True
hf_config.apply_query_key_layer_scaling = False
hf_config.apply_residual_connection_post_layernorm = False
hf_config.rmsnorm = False
hf_config.rope_ratio = 1.0
elif chatglm_version == 'chatglm':
hf_config.num_kv_heads = hf_config.num_attention_heads
hf_config.ffn_hidden_size = hf_config.inner_hidden_size
hf_config.hidden_act = 'gelu'
hf_config.max_position_embeddings = hf_config.max_sequence_length
hf_config.add_bias_linear = True
hf_config.add_qkv_bias = True
hf_config.apply_query_key_layer_scaling = False
hf_config.apply_residual_connection_post_layernorm = False
hf_config.rmsnorm = False
hf_config.rope_ratio = 1.0
else:
hf_config.vocab_size = hf_config.padded_vocab_size
hf_config.num_kv_heads = hf_config.multi_query_group_num
hf_config.hidden_act = 'swiglu'
hf_config.max_position_embeddings = hf_config.seq_length
hf_config.rmsnorm = getattr(hf_config, 'rmsnorm', 1.0)
hf_config.rope_ratio = getattr(hf_config, 'rope_ratio', 1.0)
if chatglm_version == 'glm':
position_embedding_type = 'learned_absolute'
elif chatglm_version == 'chatglm':
position_embedding_type = 'chatglm'
elif chatglm_version in GLM_ARCH2_VERSIONS:
position_embedding_type = 'rope_gptj'
rotary_base = 10000.0
rotary_embedding_scaling = None
if chatglm_version == 'chatglm2':
if hf_config.rope_ratio > 1:
rotary_embedding_scaling = {
'type': 'linear',
'factor': hf_config.rope_ratio
}
elif chatglm_version == 'chatglm3' or chatglm_version == 'glm4':
rotary_base *= hf_config.rope_ratio
if dtype == 'auto':
dtype = getattr(hf_config, 'torch_dtype', None)
if dtype is None:
dtype = 'float16'
if isinstance(dtype, torch.dtype):
dtype = torch_dtype_to_str(dtype)
if dtype == 'float32':
dtype = 'float16'
return cls(
architecture=hf_config.architectures[0],
dtype=dtype,
logits_dtype=logits_dtype,
num_hidden_layers=hf_config.num_layers,
num_attention_heads=hf_config.num_attention_heads,
num_key_value_heads=hf_config.num_kv_heads,
hidden_size=hf_config.hidden_size,
intermediate_size=hf_config.ffn_hidden_size,
norm_epsilon=hf_config.layernorm_epsilon,
vocab_size=hf_config.vocab_size,
position_embedding_type=position_embedding_type,
max_position_embeddings=hf_config.max_position_embeddings,
rotary_pct=0.5,
rotary_base=rotary_base,
rotary_scaling=rotary_embedding_scaling,
hidden_act=hf_config.hidden_act,
use_parallel_embedding=use_parallel_embedding,
embedding_sharding_dim=embedding_sharding_dim,
share_embedding_table=share_embedding_table,
quantization=quant_config,
mapping=mapping,
chatglm_version=chatglm_version,
add_bias_linear=hf_config.add_bias_linear,
add_qkv_bias=hf_config.add_qkv_bias,
apply_query_key_layer_scaling=False,
apply_residual_connection_post_layernorm=hf_config.
apply_residual_connection_post_layernorm,
rmsnorm=hf_config.rmsnorm,
)