from typing import Optional
from ..._common import default_net
from ..._utils import pad_vocab_size
from ...functional import recv, send
from ...layers import (Attention, AttentionMaskType, ColumnLinear, Embedding,
GatedMLP, LayerNorm, PositionEmbeddingType)
from ...mapping import Mapping
from ...module import Module
from ..model_weights_loader import ModelWeightsLoader
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
QuantConfig)
from .config import CohereConfig
class CohereDecoderLayer(Module):
def __init__(self, config: CohereConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
bias=False,
dtype=config.dtype)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
self.local_layer_idx = layer_idx - layers_range[0]
self.attention = Attention(
local_layer_idx=self.local_layer_idx,
hidden_size=config.hidden_size,
attention_head_size=config.head_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=config.max_position_embeddings,
dtype=config.dtype,
attention_mask_type=AttentionMaskType.causal,
bias=config.attn_bias,
position_embedding_type=PositionEmbeddingType.rope_gptj,
rotary_embedding_base=config.rotary_base,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
tp_rank=config.mapping.tp_rank,
qk_layernorm=config.qk_layernorm,
layernorm_share=False,
eps=config.norm_epsilon,
quant_mode=config.quant_mode)
self.mlp = GatedMLP(hidden_size=config.hidden_size,
ffn_hidden_size=config.intermediate_size,
hidden_act=config.hidden_act,
dtype=config.dtype,
bias=False,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode)
def forward(self,
hidden_states,
attention_mask=None,
use_cache=False,
spec_decoding_params=None,
kv_cache_params=None,
attention_params=None):
assert not (
default_net().plugin_config.reduce_fusion
), "Custom all reduce and residual mlp can't be enabled at the same time."
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
spec_decoding_params=spec_decoding_params,
kv_cache_params=kv_cache_params,
attention_params=attention_params)
if use_cache:
attention_output, presents = attention_output
mlp_output = self.mlp(hidden_states)
hidden_states = residual + attention_output + mlp_output
if use_cache:
return (hidden_states, presents)
return hidden_states
class CohereModel(Module):
def __init__(self, config: CohereConfig) -> None:
super().__init__()
self.mapping = config.mapping
if self.mapping.is_first_pp_rank():
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
tp_rank=config.mapping.tp_rank)
self.layers = DecoderLayerList(CohereDecoderLayer, config)
if self.mapping.is_last_pp_rank():
self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
bias=False,
dtype=config.dtype)
def forward(
self,
input_ids=None,
position_ids=None,
use_cache=False,
attention_mask=None,
spec_decoding_params=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
):
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
hidden_states = self.layers.forward(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
spec_decoding_params=spec_decoding_params)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, presents)
return hidden_states
[docs]
class CohereForCausalLM(DecoderModelForCausalLM):
config_class = CohereConfig
def __init__(self, config: CohereConfig):
transformer = CohereModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
self.quant_mode = config.quant_mode
self.mapping = config.mapping
super().__init__(config, transformer, lm_head)
[docs]
@classmethod
def from_hugging_face(cls,
hf_model_or_dir: str,
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
''' Create a CohereForCausalLM object from give parameters
'''
config = CohereConfig.from_hugging_face(hf_model_or_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
model = cls(config)
custom_dict = {
'q_layernorm': 'q_norm',
'k_layernorm': 'k_norm',
}
loader = ModelWeightsLoader(hf_model_or_dir, custom_dict)
loader.generate_tllm_weights(model)
return model