Source code for tensorrt_llm.models.dbrx.config

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Union

from ...layers import MoeConfig
from ..modeling_utils import PretrainedConfig


[docs] class DbrxConfig(PretrainedConfig): def __init__(self, *, bias: bool = False, clip_qkv: Optional[float] = None, rotary_base: float = 500000.0, rotary_scaling: Optional[dict] = None, moe: Optional[Union[MoeConfig, dict]] = None, **kwargs): self.bias = bias self.clip_qkv = clip_qkv self.rotary_base = rotary_base self.rotary_scaling = rotary_scaling if moe is None: # Legacy MOE config fields moe = MoeConfig( num_experts=kwargs.pop('moe_num_experts', 0), top_k=kwargs.pop('moe_top_k', 0), normalization_mode=kwargs.pop( 'moe_normalization_mode', MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE)) elif isinstance(moe, dict): moe = MoeConfig.from_dict(moe) assert isinstance(moe, MoeConfig) self.moe = moe.validate() super().__init__(**kwargs)
[docs] def to_dict(self): output = super().to_dict() # Serialize the fields added in DbrxConfig output['bias'] = self.bias output['clip_qkv'] = self.clip_qkv output['rotary_base'] = self.rotary_base output['rotary_scaling'] = self.rotary_scaling output['moe'] = self.moe.to_dict() return output