Source code for tensorrt_llm.models.enc_dec.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from collections import OrderedDict
from typing import List, Optional

import tensorrt as trt
import torch

from tensorrt_llm._common import default_net
from tensorrt_llm._utils import numpy_to_torch, str_dtype_to_torch
from tensorrt_llm.functional import (LayerNormPositionType, LayerNormType,
                                     MLPType, PositionEmbeddingType, Tensor,
                                     assertion, cast, gather_last_token_logits,
                                     gelu, maximum, minimum, recv, send, shape,
                                     transpose, unsqueeze)
from tensorrt_llm.layers import (MLP, Attention, AttentionMaskParams,
                                 AttentionMaskType, AttentionParams,
                                 BertAttention, ColumnLinear, Conv1d, Embedding,
                                 FusedGatedMLP, GatedMLP, GroupNorm,
                                 KeyValueCacheParams, LayerNorm, LoraParams,
                                 PromptTuningEmbedding, RmsNorm)
from tensorrt_llm.lora_manager import (LoraConfig,
                                       get_default_trtllm_modules_to_hf_modules,
                                       use_lora)
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.modeling_utils import PretrainedConfig, PretrainedModel
from tensorrt_llm.module import Module, ModuleList
from tensorrt_llm.parameter import Parameter
from tensorrt_llm.plugin.plugin import current_all_reduce_helper

layernorm_map = {
    LayerNormType.LayerNorm: LayerNorm,
    LayerNormType.RmsNorm: RmsNorm,
    LayerNormType.GroupNorm: GroupNorm,
}

mlp_map = {
    MLPType.MLP: MLP,
    MLPType.GatedMLP: GatedMLP,
    MLPType.FusedGatedMLP: FusedGatedMLP,
}


class EncDecEmbedding(Module):

    def __init__(self,
                 vocab_size,
                 hidden_size,
                 max_position_embeddings=None,
                 has_position_embedding=False,
                 type_vocab_size=None,
                 has_embedding_layernorm=False,
                 has_embedding_scale=False,
                 layernorm_eps=1e-5,
                 layernorm_type=LayerNormType.LayerNorm,
                 dtype=None,
                 use_parallel_embedding=False,
                 embedding_sharding_dim=0,
                 mapping=Mapping()):
        super().__init__()

        self.layernorm_type = layernorm_type
        ln_type = layernorm_map[layernorm_type]

        self.vocab_embedding = Embedding(
            vocab_size,
            hidden_size,
            dtype=dtype,
            tp_size=mapping.tp_size if use_parallel_embedding else 1,
            tp_group=mapping.tp_group if use_parallel_embedding else None,
            sharding_dim=embedding_sharding_dim,
            tp_rank=mapping.tp_rank)

        self.position_embedding = None
        self.max_position_embeddings = max_position_embeddings
        if has_position_embedding:
            self.position_embedding = Embedding(
                max_position_embeddings,
                hidden_size,
                dtype=dtype,
                tp_size=mapping.tp_size if use_parallel_embedding else 1,
                tp_group=mapping.tp_group if use_parallel_embedding else None,
                sharding_dim=embedding_sharding_dim,
                tp_rank=mapping.tp_rank)

        self.token_type_embedding = None
        if type_vocab_size:
            self.token_type_embedding = Embedding(
                type_vocab_size,
                hidden_size,
                dtype=dtype,
                tp_size=mapping.tp_size if use_parallel_embedding else 1,
                tp_group=mapping.tp_group if use_parallel_embedding else None,
                sharding_dim=embedding_sharding_dim,
                tp_rank=mapping.tp_rank)

        # e.g. BART true, T5 false
        self.embedding_layernorm = None
        if has_embedding_layernorm:
            self.embedding_layernorm = ln_type(normalized_shape=hidden_size,
                                               eps=layernorm_eps,
                                               dtype=dtype)

        # e.g. BART true, T5 false
        self.embedding_scale = 1.0
        if has_embedding_scale:
            self.embedding_scale = math.sqrt(hidden_size)

        # Note: embedding offset in BART is not considered as a standard. For the specific case,
        # we just need to shrink its position embedding table by [offset:] during weight loading

    def forward(self,
                input_ids,
                position_ids=None,
                token_type_ids=None,
                prompt_embedding_table=None,
                prompt_tasks=None,
                prompt_vocab_size=None):
        # position_ids and token_type_ids are provided inputs
        # and should not be formulated deterministically

        args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size
                ] if prompt_embedding_table is not None else []

        x = self.vocab_embedding(input_ids, *args) * self.embedding_scale
        self.register_network_output('word_embeddings', x)

        if self.position_embedding:
            pos_emb = self.position_embedding(position_ids)
            self.register_network_output('position_embeddings', pos_emb)
            x = x + pos_emb
        if self.token_type_embedding:
            x = x + self.token_type_embedding(token_type_ids)

        if self.embedding_layernorm:
            x = self.embedding_layernorm(x)

        return x


class EncoderLayer(Module):

    def __init__(self,
                 hidden_size,
                 ffn_hidden_size,
                 num_attention_heads,
                 num_kv_heads,
                 head_size,
                 max_position_embeddings=None,
                 q_scaling=1.0,
                 has_attention_qkvo_bias=False,
                 has_mlp_bias=False,
                 layernorm_position=LayerNormPositionType.pre_layernorm,
                 layernorm_type=LayerNormType.LayerNorm,
                 layernorm_eps=1e-5,
                 hidden_act="relu",
                 mlp_type=MLPType.MLP,
                 mapping=Mapping(),
                 dtype=None,
                 residual_scaling=1.0,
                 relative_attention=False,
                 max_distance=0,
                 num_buckets=0,
                 fp16_clamping=False):
        super().__init__()

        # e.g. BART regular, T5 RMS
        self.layernorm_type = layernorm_type
        ln_type = layernorm_map[layernorm_type]

        # e.g. BART post, T5 pre
        self.layernorm_position = layernorm_position

        # e.g. BART q_scaling = 1.f, T5 q_scaling = 1.f/sqrt(head_size)
        self.attention = BertAttention(
            hidden_size,
            num_attention_heads,
            attention_head_size=head_size,
            num_kv_heads=num_kv_heads,
            max_position_embeddings=max_position_embeddings,
            q_scaling=q_scaling,
            bias=has_attention_qkvo_bias,
            tp_group=mapping.tp_group,
            tp_size=mapping.tp_size,
            tp_rank=mapping.tp_rank,
            dtype=dtype,
            relative_attention=relative_attention,
            max_distance=max_distance,
            num_buckets=num_buckets)

        self.attention_layernorm = ln_type(normalized_shape=hidden_size,
                                           eps=layernorm_eps,
                                           dtype=dtype)

        # T5/BART MLP, Flan-T5 GatedMLP
        self.mlp_type = mlp_type
        mlp_f = mlp_map[mlp_type]
        self.mlp = mlp_f(
            hidden_size=hidden_size,
            ffn_hidden_size=ffn_hidden_size,
            hidden_act=hidden_act,
            bias=has_mlp_bias,
            tp_group=mapping.tp_group,
            tp_size=mapping.tp_size,
            dtype=dtype,
        )

        self.mlp_layernorm = ln_type(normalized_shape=hidden_size,
                                     eps=layernorm_eps,
                                     dtype=dtype)

        self.residual_scaling = residual_scaling

        # T5-series model(e.g. t5-large, t5-3b, flan-t5-small) has accuracy issue due to fp16 overflow
        # after residual add. We add workaround for clamping fp16 range [-64000, 64000] after every
        # residual add to avoid accuracy drop.
        self.fp16_clamping = fp16_clamping

    def forward(self,
                hidden_states: Tensor,
                attention_mask=None,
                input_lengths=None,
                max_input_length=None,
                lora_layer_params=None):
        assert isinstance(hidden_states, Tensor)

        # self attention
        residual = hidden_states * self.residual_scaling

        if self.layernorm_position == LayerNormPositionType.pre_layernorm:
            hidden_states = self.attention_layernorm(hidden_states)

        attention_output = self.attention(hidden_states,
                                          attention_mask=attention_mask,
                                          input_lengths=input_lengths,
                                          max_input_length=max_input_length,
                                          lora_layer_params=lora_layer_params)

        self.register_network_output('attention_output', attention_output)

        hidden_states = residual + attention_output

        if self.fp16_clamping:
            hidden_states = maximum(-64000.0, hidden_states)
            hidden_states = minimum(64000.0, hidden_states)

        if self.layernorm_position == LayerNormPositionType.post_layernorm:
            hidden_states = self.attention_layernorm(hidden_states)

        # MLP
        residual = hidden_states * self.residual_scaling

        if self.layernorm_position == LayerNormPositionType.pre_layernorm:
            hidden_states = self.mlp_layernorm(hidden_states)

        hidden_states = self.mlp(hidden_states,
                                 lora_layer_params=lora_layer_params)

        self.register_network_output('mlp_output', hidden_states)

        hidden_states = residual + hidden_states

        if self.fp16_clamping:
            hidden_states = maximum(-64000.0, hidden_states)
            hidden_states = minimum(64000.0, hidden_states)

        if self.layernorm_position == LayerNormPositionType.post_layernorm:
            hidden_states = self.mlp_layernorm(hidden_states)

        return hidden_states


class DecoderLayer(Module):

    def __init__(self,
                 *,
                 local_layer_idx,
                 hidden_size,
                 ffn_hidden_size,
                 num_attention_heads,
                 num_kv_heads,
                 head_size,
                 max_position_embeddings=None,
                 q_scaling=1.0,
                 has_attention_qkvo_bias=False,
                 has_mlp_bias=False,
                 layernorm_position=LayerNormPositionType.pre_layernorm,
                 layernorm_type=LayerNormType.LayerNorm,
                 layernorm_eps=1e-5,
                 hidden_act="relu",
                 mlp_type=MLPType.MLP,
                 mapping=Mapping(),
                 dtype=None,
                 residual_scaling=1.0,
                 relative_attention=False,
                 max_distance=0,
                 num_buckets=0,
                 fp16_clamping=False,
                 skip_cross_kv=False,
                 use_implicit_relative_attention=False):
        super().__init__()

        # e.g. BART regular, T5 RMS
        self.layernorm_type = layernorm_type
        ln_type = layernorm_map[layernorm_type]

        # e.g. BART post, T5 pre
        self.layernorm_position = layernorm_position

        # e.g. BART q_scaling = 1.f, T5 q_scaling = 1.f/sqrt(head_size)
        self.self_attention = Attention(
            local_layer_idx=local_layer_idx,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            attention_head_size=head_size,
            num_kv_heads=num_kv_heads,
            max_position_embeddings=max_position_embeddings,
            q_scaling=q_scaling,
            bias=has_attention_qkvo_bias,
            attention_mask_type=AttentionMaskType.causal,
            tp_group=mapping.tp_group,
            tp_size=mapping.tp_size,
            tp_rank=mapping.tp_rank,
            dtype=dtype,
            cross_attention=False,
            relative_attention=relative_attention,
            max_distance=max_distance if use_implicit_relative_attention else 0,
            num_buckets=num_buckets,
            position_embedding_type=PositionEmbeddingType.relative
            if relative_attention else PositionEmbeddingType.learned_absolute,
            use_implicit_relative_attention=use_implicit_relative_attention)

        self.self_attention_layernorm = ln_type(normalized_shape=hidden_size,
                                                eps=layernorm_eps,
                                                dtype=dtype)

        # Note: self attn uses MMHA, mask is always causal triangular
        # cross attn has two scenarios:
        # - in context phase, all ones mask, same as padding type
        # - in generation phase, same causal triangular mask as MMHA
        # - context phase special handling is done in plugin by resetting mask type
        #
        # e.g. BART q_scaling = 1.f, T5 q_scaling = 1.f/sqrt(head_size)
        self.cross_attention = Attention(
            local_layer_idx=local_layer_idx,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            attention_head_size=head_size,
            num_kv_heads=num_kv_heads,
            max_position_embeddings=max_position_embeddings,
            q_scaling=q_scaling,
            bias=has_attention_qkvo_bias,
            attention_mask_type=AttentionMaskType.causal,
            tp_group=mapping.tp_group,
            tp_size=mapping.tp_size,
            tp_rank=mapping.tp_rank,
            dtype=dtype,
            cross_attention=True,
            relative_attention=
            False,  # Cross attention has no relative attention bias
            max_distance=max_distance,
            num_buckets=num_buckets,
            position_embedding_type=PositionEmbeddingType.learned_absolute,
            skip_cross_kv=skip_cross_kv)

        self.cross_attention_layernorm = ln_type(normalized_shape=hidden_size,
                                                 eps=layernorm_eps,
                                                 dtype=dtype)

        # T5/BART MLP, Flan-T5 GatedMLP
        self.mlp_type = mlp_type
        mlp_f = mlp_map[mlp_type]
        self.mlp = mlp_f(
            hidden_size=hidden_size,
            ffn_hidden_size=ffn_hidden_size,
            hidden_act=hidden_act,
            bias=has_mlp_bias,
            tp_group=mapping.tp_group,
            tp_size=mapping.tp_size,
            dtype=dtype,
        )

        self.mlp_layernorm = ln_type(normalized_shape=hidden_size,
                                     eps=layernorm_eps,
                                     dtype=dtype)

        self.residual_scaling = residual_scaling

        # T5-series model(e.g. t5-large, t5-3b, flan-t5-small) has accuracy issue due to fp16 overflow
        # after residual add. We add workaround for clamping fp16 range [-64000, 64000] after every
        # residual add to avoid accuracy drop.
        self.fp16_clamping = fp16_clamping

    def forward(self,
                hidden_states: Tensor,
                encoder_output: Optional[Tensor] = None,
                attention_mask_params=None,
                use_cache=False,
                kv_cache_params=None,
                attention_params=None,
                lora_layer_params=None,
                cross_kv_cache_gen: Optional[Tensor] = None,
                cross_kv_reuse: Optional[Tensor] = None):
        assert isinstance(hidden_states, Tensor)

        if encoder_output:
            assert isinstance(encoder_output, Tensor)

        # self-attention
        residual = hidden_states * self.residual_scaling

        if self.layernorm_position == LayerNormPositionType.pre_layernorm:
            hidden_states = self.self_attention_layernorm(hidden_states)

        attention_output = self.self_attention(
            hidden_states=hidden_states,
            attention_mask=attention_mask_params.self_attention_mask,
            use_cache=use_cache,
            kv_cache_params=kv_cache_params,
            attention_params=attention_params,
            lora_layer_params=lora_layer_params)

        if use_cache:
            attention_output, presents_self = attention_output

        self.register_network_output('self_attention_output', attention_output)

        hidden_states = residual + attention_output

        if self.fp16_clamping:
            hidden_states = maximum(-64000.0, hidden_states)
            hidden_states = minimum(64000.0, hidden_states)

        if self.layernorm_position == LayerNormPositionType.post_layernorm:
            hidden_states = self.self_attention_layernorm(hidden_states)

        # cross attention
        residual = hidden_states * self.residual_scaling

        if self.layernorm_position == LayerNormPositionType.pre_layernorm:
            hidden_states = self.cross_attention_layernorm(hidden_states)

        attention_output = self.cross_attention(
            hidden_states=hidden_states,
            attention_mask=attention_mask_params.cross_attention_mask,
            attention_packed_mask=attention_mask_params.
            cross_attention_packed_mask,
            encoder_output=encoder_output,
            use_cache=use_cache,
            kv_cache_params=kv_cache_params,
            attention_params=attention_params,
            lora_layer_params=lora_layer_params,
            cross_kv_cache_gen=cross_kv_cache_gen,
            cross_kv_reuse=cross_kv_reuse)

        if use_cache:
            attention_output, presents_cross = attention_output

        self.register_network_output('cross_attention_output', attention_output)

        hidden_states = residual + attention_output

        if self.fp16_clamping:
            hidden_states = maximum(-64000.0, hidden_states)
            hidden_states = minimum(64000.0, hidden_states)

        if self.layernorm_position == LayerNormPositionType.post_layernorm:
            hidden_states = self.cross_attention_layernorm(hidden_states)

        # MLP
        residual = hidden_states * self.residual_scaling

        if self.layernorm_position == LayerNormPositionType.pre_layernorm:
            hidden_states = self.mlp_layernorm(hidden_states)

        hidden_states = self.mlp(hidden_states,
                                 lora_layer_params=lora_layer_params)
        self.register_network_output('mlp_output', hidden_states)

        hidden_states = residual + hidden_states

        if self.fp16_clamping:
            hidden_states = maximum(-64000.0, hidden_states)
            hidden_states = minimum(64000.0, hidden_states)

        if self.layernorm_position == LayerNormPositionType.post_layernorm:
            hidden_states = self.mlp_layernorm(hidden_states)

        if use_cache:
            return (hidden_states, presents_self, presents_cross)
        return hidden_states


[docs] class EncoderModel(PretrainedModel): def __init__(self, config: PretrainedConfig): self.check_config(config) super().__init__(config) self.mapping = self.config.mapping self.has_position_embedding = self.config.has_position_embedding type_vocab_size = self.config.type_vocab_size self.has_token_type_embedding = False if type_vocab_size is None else True # e.g. BART regular, T5 RMS self.layernorm_type = self.config.layernorm_type ln_type = layernorm_map[self.layernorm_type] # e.g. BART true, T5 false self.has_attention_qkvo_bias = self.config.has_attention_qkvo_bias self.has_mlp_bias = self.config.has_mlp_bias # e.g. BART false, T5 true self.has_model_final_layernorm = self.config.has_model_final_layernorm self._dtype = self.config.dtype self.total_num_layers = self.config.num_hidden_layers self.num_layers = self.config.num_hidden_layers // self.mapping.pp_size self.hidden_size = self.config.hidden_size self.num_heads = self.config.num_attention_heads num_kv_heads = self.num_heads if num_kv_heads is None or num_kv_heads <= 0: num_kv_heads = self.config.num_attention_heads self.num_kv_heads = num_kv_heads self.head_size = self.hidden_size // self.num_heads if self.config.head_size is None else self.config.head_size self.fp16_clamping = (self.config.dtype == 'float16') and (self.config.model_type == 't5') self.mlp_type = MLPType.MLP if not hasattr( self.config, "mlp_type") else self.config.mlp_type if self.mapping.is_first_pp_rank(): self.embedding = EncDecEmbedding( self.config.vocab_size, self.config.hidden_size, max_position_embeddings=self.config.max_position_embeddings, has_position_embedding=self.has_position_embedding, type_vocab_size=type_vocab_size, has_embedding_layernorm=self.config.has_embedding_layernorm, has_embedding_scale=self.config.has_embedding_scale, layernorm_eps=self.config.norm_epsilon, layernorm_type=self.layernorm_type, dtype=self.config.dtype, use_parallel_embedding=self.config.use_parallel_embedding, embedding_sharding_dim=self.config.embedding_sharding_dim, mapping=self.mapping) self.encoder_layers = ModuleList([ EncoderLayer( hidden_size=self.hidden_size, ffn_hidden_size=self.config.intermediate_size, num_attention_heads=self.num_heads, num_kv_heads=num_kv_heads, head_size=self.head_size, max_position_embeddings=self.config.max_position_embeddings, q_scaling=self.config.q_scaling, has_attention_qkvo_bias=self.has_attention_qkvo_bias, has_mlp_bias=self.has_mlp_bias, layernorm_position=self.config.layernorm_position, layernorm_eps=self.config.norm_epsilon, layernorm_type=self.layernorm_type, hidden_act=self.config.hidden_act, mlp_type=self.mlp_type, mapping=self.mapping, dtype=self.config.dtype, residual_scaling=1.0 if not hasattr(self.config, "residual_scaling") else self.config.residual_scaling, relative_attention=self.config.relative_attention, max_distance=self.config.max_distance, num_buckets=self.config.num_buckets, fp16_clamping=self.fp16_clamping) for _ in self.mapping.pp_layers(self.total_num_layers) ]) if self.mapping.is_last_pp_rank(): if self.has_model_final_layernorm: self.final_layernorm = ln_type( normalized_shape=self.config.hidden_size, eps=self.config.norm_epsilon, dtype=self.config.dtype)
[docs] def check_config(self, config: PretrainedConfig): config.set_if_not_exist('has_position_embedding', False) config.set_if_not_exist('type_vocab_size', None) config.set_if_not_exist('rescale_before_lm_head', False) config.set_if_not_exist('layernorm_type', LayerNormType.LayerNorm) config.set_if_not_exist('layernorm_position', LayerNormPositionType.pre_layernorm) config.set_if_not_exist('has_attention_qkvo_bias', False) config.set_if_not_exist('has_mlp_bias', False) config.set_if_not_exist('has_model_final_layernorm', False) config.set_if_not_exist('encoder_hidden_size', None) config.set_if_not_exist('encoder_num_heads', None) config.set_if_not_exist('encoder_num_kv_heads', None) config.set_if_not_exist('encoder_head_size', None) config.set_if_not_exist('model_type', 't5') config.set_if_not_exist('skip_cross_kv', False) config.set_if_not_exist('mlp_type', MLPType.MLP) config.set_if_not_exist('has_embedding_scale', False) config.set_if_not_exist('residual_scaling', 1.0) config.set_if_not_exist('has_lm_head_bias', False) config.set_if_not_exist('num_buckets', None) config.set_if_not_exist('max_distance', None) config.set_if_not_exist('relative_attention', False) config.set_if_not_exist('residual_scaling', 1.0)
[docs] def forward(self, input_ids: Tensor, input_lengths=None, position_ids=None, token_type_ids=None, hidden_states=None, max_input_length=None, prompt_embedding_table=None, prompt_tasks=None, prompt_vocab_size=None, attention_mask=None, lora_params: LoraParams = None): # In PP, layer 0 has ids as inputs, all other layers have hidden_states as inputs if self.mapping.is_first_pp_rank(): ptuning_args = [ prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if prompt_embedding_table is not None else [] hidden_states = self.embedding(input_ids, position_ids, token_type_ids, *ptuning_args) self.register_network_output('embedding_layer_output', hidden_states) else: hidden_states = recv(hidden_states, self.mapping.prev_pp_rank()) for layer_idx, encoder_layer in enumerate(self.encoder_layers): lora_layer_params = None if lora_params is not None and lora_params.lora_ranks is not None: lora_layer_params = lora_params.get_layer_params(layer_idx) hidden_states = encoder_layer(hidden_states=hidden_states, attention_mask=attention_mask, input_lengths=input_lengths, max_input_length=max_input_length, lora_layer_params=lora_layer_params) if self.mapping.is_last_pp_rank(): if self.has_model_final_layernorm: hidden_states = self.final_layernorm(hidden_states) hidden_states.mark_output('encoder_output', self._dtype) else: hidden_states = send(hidden_states, self.mapping.next_pp_rank()) hidden_states.mark_output('hidden_states_output', self._dtype) return hidden_states
[docs] def prepare_inputs(self, max_batch_size, max_input_len, prompt_embedding_table_size: int = 0, lora_target_modules: List[str] = None, *args, **kwargs): '''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the ranges of the dimensions of when using TRT dynamic shapes. @return: a list contains values which can be fed into the self.forward() ''' hidden_size = self.hidden_size bs_range = [1, (max_batch_size + 1) // 2, max_batch_size] inlen_range = [1, (max_input_len + 1) // 2, max_input_len] num_tokens_range = [ 1, (max_input_len * max_batch_size + 1) // 2, max_input_len * max_batch_size, ] input_ids, position_ids, token_type_ids, hidden_states = None, None, None, None remove_input_padding = default_net().plugin_config.remove_input_padding use_lora_plugin = default_net().plugin_config.lora_plugin attention_mask = None if remove_input_padding: if self.mapping.is_first_pp_rank(): input_ids = Tensor( name="input_ids", dtype=trt.int32, shape=[-1], dim_range=OrderedDict([("num_tokens", [num_tokens_range])]), ) if self.has_position_embedding: position_ids = Tensor( name='position_ids', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([('num_tokens', [num_tokens_range])]), ) if self.has_token_type_embedding: token_type_ids = Tensor( name='token_type_ids', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([('num_tokens', [num_tokens_range])]), ) else: hidden_states = Tensor(name='hidden_states_input', dtype=self._dtype, shape=[-1, hidden_size], dim_range=OrderedDict([ ('num_tokens', [num_tokens_range]), ('hidden_size', [hidden_size]), ])) else: if self.mapping.is_first_pp_rank(): input_ids = Tensor( name="input_ids", dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([("batch_size", [bs_range]), ("input_len", [inlen_range])]), ) if self.has_position_embedding: position_ids = Tensor( name='position_ids', dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([('batch_size', [bs_range]), ('input_len', [inlen_range])]), ) if self.has_token_type_embedding: token_type_ids = Tensor( name='token_type_ids', dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([('batch_size', [bs_range]), ('input_len', [inlen_range])]), ) else: hidden_states = Tensor(name='hidden_states_input', dtype=self._dtype, shape=[-1, -1, hidden_size], dim_range=OrderedDict([ ('batch_size', [bs_range]), ('input_len', [inlen_range]), ('hidden_size', [hidden_size]), ])) if not default_net().plugin_config.bert_attention_plugin: attention_mask = Tensor( name='attention_mask', dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([ ('batch_size', [bs_range]), ('input_len', [inlen_range]), ]), ) # if self.mapping.tp_size > 1: # current_all_reduce_helper().set_workspace_tensor(self.mapping, 1) # FIXME(TRTLLM-996): Support custom allreduce for encoder models on C++ runtime input_lengths = Tensor( name="input_lengths", dtype=trt.int32, shape=[-1], dim_range=OrderedDict([("batch_size", [bs_range])]), ) max_input_length = Tensor( name="max_input_length", dtype=trt.int32, shape=[-1], dim_range=OrderedDict([("max_input_length", [inlen_range])]), ) prompt_embedding_table = None tasks = None prompt_vocab_size = None if self.mapping.is_first_pp_rank() and prompt_embedding_table_size > 0: p_embedding_range = [[ 1, prompt_embedding_table_size // 2, prompt_embedding_table_size ]] prompt_embedding_table = Tensor(name='prompt_embedding_table', dtype=self._dtype, shape=[-1, hidden_size], dim_range=OrderedDict([ ('prompt_embedding_table_size', p_embedding_range), ('hidden_size', [hidden_size]), ])) if remove_input_padding: tasks = Tensor(name='tasks', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([('input_len_task', [num_tokens_range])])) else: tasks = Tensor(name='tasks', dtype=trt.int32, shape=[-1, 1], dim_range=OrderedDict([ ('batch_size', bs_range), ('broadcast_dim', [1]), ])) prompt_vocab_size = Tensor(name='prompt_vocab_size', dtype=trt.int32, shape=[1], dim_range=OrderedDict([('size', [1])])) ''' LoRA plugin related inputs: lora_target_modules for BART-encoder: ['attn_q', 'attn_v'] For BART-decoder, the lora_target_modules is different. See comments in the DecoderModel.prepare_inputs() for more details. ''' lora_weights_pointers = None lora_ranks = None lora_params = None if use_lora_plugin: lora_weights_pointers = [] lora_ranks = [] # In current design, q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time. # However, BART lora modules only contain two of them, so we use zero tensor to fill the missing ones. missing_qkv_modules = [] if any(x in lora_target_modules for x in ["attn_q", "attn_k", "attn_v"]): for lora_module in ["attn_q", "attn_k", "attn_v"]: if lora_module not in lora_target_modules: missing_qkv_modules.append(lora_module) layers_range = self.mapping.pp_layers(self.total_num_layers) for i in layers_range: lora_weight_pointer_dict = {} lora_rank_dict = {} for lora_module in (lora_target_modules + missing_qkv_modules): lora_weight_pointer = Tensor( name=f'{lora_module}_lora_weights_pointers_{i}', dtype=trt.int64, shape=[-1, 2], dim_range=OrderedDict([('batch_size', [bs_range]), ('in_out', [2])])) lora_weight_pointer_dict.update({ f'{lora_module}_lora_weights_pointers': lora_weight_pointer }) lora_rank = Tensor(name=f'{lora_module}_lora_ranks_{i}', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([('batch_size', [bs_range])])) lora_rank_dict.update( {f'{lora_module}_lora_ranks': lora_rank}) lora_weights_pointers.append(lora_weight_pointer_dict) lora_ranks.append(lora_rank_dict) host_request_types = Tensor(name='host_request_types', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([('batch_size', [bs_range])])) host_context_lengths = None if remove_input_padding: host_context_lengths = Tensor(name='host_context_lengths', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([ ('batch_size', [bs_range]) ])) lora_params = LoraParams( lora_ranks=lora_ranks, lora_weights_pointers=lora_weights_pointers, host_request_types=host_request_types, host_context_lengths=host_context_lengths, ) result = { 'input_ids': input_ids, 'input_lengths': input_lengths, 'position_ids': position_ids, 'token_type_ids': token_type_ids, 'hidden_states': hidden_states, 'max_input_length': max_input_length, 'prompt_embedding_table': prompt_embedding_table, 'prompt_tasks': tasks, 'prompt_vocab_size': prompt_vocab_size, 'attention_mask': attention_mask, 'lora_params': lora_params, } return result
[docs] def use_lora(self, lora_config: LoraConfig): use_lora(self, lora_config)
[docs] def use_prompt_tuning(self): embedding = self.embedding.vocab_embedding self.embedding.vocab_embedding = PromptTuningEmbedding( num_embeddings=embedding.num_embeddings, embedding_dim=embedding.embedding_dim, dtype=embedding.dtype, tp_size=embedding.tp_size, tp_group=embedding.tp_group, sharding_dim=embedding.sharding_dim, tp_rank=embedding.tp_rank) self.embedding.vocab_embedding.weight.value = embedding.weight.raw_value
[docs] def precompute_relative_attention_bias(self, build_config): pass
[docs] class DecoderModel(PretrainedModel): def __init__(self, config: PretrainedConfig): self.check_config(config) super().__init__(config) self.mapping = self.config.mapping self.has_position_embedding = self.config.has_position_embedding type_vocab_size = self.config.type_vocab_size self.has_token_type_embedding = (type_vocab_size is not None) self.rescale_before_lm_head = self.config.rescale_before_lm_head # e.g. BART regular, T5 RMS self.layernorm_type = self.config.layernorm_type ln_type = layernorm_map[self.layernorm_type] # e.g. BART true, T5 false self.has_attention_qkvo_bias = self.config.has_attention_qkvo_bias self.has_mlp_bias = self.config.has_mlp_bias # e.g. BART false, T5 true self.has_model_final_layernorm = self.config.has_model_final_layernorm self._dtype = self.config.dtype # no quantization considered for now self._kv_dtype = self._dtype self._logits_dtype = self.config.logits_dtype self.total_num_layers = self.config.num_hidden_layers self.num_layers = self.config.num_hidden_layers // self.mapping.pp_size self.hidden_size = self.config.hidden_size self.num_heads = self.config.num_attention_heads num_kv_heads = self.num_heads if num_kv_heads is None or num_kv_heads <= 0: num_kv_heads = self.num_heads self.num_kv_heads = num_kv_heads self.head_size = self.hidden_size // self.num_heads if self.config.head_size is None else self.config.head_size self.encoder_hidden_size = self.config.encoder_hidden_size self.encoder_num_heads = self.config.encoder_num_heads encoder_num_kv_heads = None if not hasattr( self.config, "encoder_num_kv_heads") else self.config.encoder_num_kv_heads if encoder_num_kv_heads is None or encoder_num_kv_heads <= 0: encoder_num_kv_heads = self.encoder_num_heads self.encoder_num_kv_heads = encoder_num_kv_heads self.encoder_head_size = self.encoder_hidden_size // self.num_heads if self.config.encoder_head_size is None else self.config.encoder_head_size self.has_position_embedding = self.config.has_position_embedding self.has_token_type_embedding = type_vocab_size is not None self.fp16_clamping = (self.config.dtype == 'float16') and (self.config.model_type in ['t5', 'pix2struct']) self.skip_cross_kv = self.config.skip_cross_kv self.mlp_type = MLPType.MLP if not hasattr( self.config, "mlp_type") else self.config.mlp_type self.use_implicit_relative_attention = self.config.use_implicit_relative_attention if hasattr( self.config, "use_implicit_relative_attention") else False if self.mapping.is_first_pp_rank(): self.embedding = EncDecEmbedding( self.config.vocab_size, self.config.hidden_size, max_position_embeddings=self.config.max_position_embeddings, has_position_embedding=self.config.has_position_embedding, type_vocab_size=type_vocab_size, has_embedding_layernorm=self.config.has_embedding_layernorm, has_embedding_scale=self.config.has_embedding_scale, layernorm_eps=self.config.norm_epsilon, layernorm_type=self.config.layernorm_type, dtype=self._dtype, use_parallel_embedding=self.config.use_parallel_embedding, embedding_sharding_dim=self.config.embedding_sharding_dim, mapping=self.mapping) layers_range = self.mapping.pp_layers(self.total_num_layers) self.decoder_layers = ModuleList([ DecoderLayer( local_layer_idx=layer_idx - layers_range[0], hidden_size=self.config.hidden_size, ffn_hidden_size=self.config.intermediate_size, num_attention_heads=self.num_heads, num_kv_heads=self.num_kv_heads, head_size=self.head_size, max_position_embeddings=self.config.max_position_embeddings, q_scaling=self.config.q_scaling, has_attention_qkvo_bias=self.config.has_attention_qkvo_bias, has_mlp_bias=self.config.has_mlp_bias, layernorm_position=self.config.layernorm_position, layernorm_eps=self.config.norm_epsilon, layernorm_type=self.config.layernorm_type, hidden_act=self.config.hidden_act, mlp_type=self.mlp_type, mapping=self.mapping, dtype=self._dtype, residual_scaling=self.config.residual_scaling, relative_attention=self.config.relative_attention, max_distance=self.config.max_distance, num_buckets=self.config.num_buckets, fp16_clamping=self.fp16_clamping, skip_cross_kv=self.skip_cross_kv, use_implicit_relative_attention=self. use_implicit_relative_attention) for layer_idx in layers_range ]) if self.mapping.is_last_pp_rank(): if self.has_model_final_layernorm: self.final_layernorm = ln_type( normalized_shape=self.config.hidden_size, eps=self.config.norm_epsilon, dtype=self.config.dtype) self.lm_head = ColumnLinear( self.config.hidden_size, self.config.vocab_size, bias=False if not hasattr(self.config, "has_lm_head_bias") else self.config.has_lm_head_bias, dtype=self.config.dtype, tp_group=self.config.mapping.tp_group, tp_size=self.config.mapping.tp_size, gather_output=True, ) self.trtllm_modules_to_hf_modules = { **get_default_trtllm_modules_to_hf_modules(), "attn_q": "self_attn.q_proj", "attn_k": "self_attn.k_proj", "attn_v": "self_attn.v_proj", "attn_dense": "self_attn.o_proj", "cross_attn_q": "encoder_attn.q_proj", "cross_attn_k": "encoder_attn.k_proj", "cross_attn_v": "encoder_attn.v_proj", "cross_attn_dense": "encoder_attn.o_proj", } if self.config.relative_attention and not self.use_implicit_relative_attention: self.rel_attn_table = Parameter( shape=(self.config.num_attention_heads // self.mapping.tp_size, self.config.num_buckets), dtype=self._dtype)
[docs] def check_config(self, config: PretrainedConfig): config.set_if_not_exist('has_position_embedding', False) config.set_if_not_exist('type_vocab_size', None) config.set_if_not_exist('rescale_before_lm_head', False) config.set_if_not_exist('layernorm_type', LayerNormType.LayerNorm) config.set_if_not_exist('layernorm_position', LayerNormPositionType.pre_layernorm) config.set_if_not_exist('has_attention_qkvo_bias', False) config.set_if_not_exist('has_mlp_bias', False) config.set_if_not_exist('has_model_final_layernorm', False) config.set_if_not_exist('encoder_hidden_size', None) config.set_if_not_exist('encoder_num_heads', None) config.set_if_not_exist('encoder_num_kv_heads', None) config.set_if_not_exist('encoder_head_size', None) config.set_if_not_exist('model_type', 't5') config.set_if_not_exist('skip_cross_kv', False) config.set_if_not_exist('mlp_type', MLPType.MLP) config.set_if_not_exist('has_embedding_scale', False) config.set_if_not_exist('residual_scaling', 1.0) config.set_if_not_exist('has_lm_head_bias', False) config.set_if_not_exist('num_buckets', None) config.set_if_not_exist('max_distance', None) config.set_if_not_exist('relative_attention', False) config.set_if_not_exist('residual_scaling', 1.0)
[docs] def forward(self, decoder_input_ids: Tensor, encoder_output: Tensor, position_ids=None, token_type_ids=None, use_cache=False, attention_mask_params=None, last_token_ids=None, kv_cache_params=None, attention_params=None, hidden_states=None, lora_params: LoraParams = None, cross_kv_cache_gen: Optional[Tensor] = None, cross_kv_reuse: Optional[Tensor] = None): if self.mapping.is_first_pp_rank(): assert isinstance(decoder_input_ids, Tensor) else: assert isinstance(hidden_states, Tensor) # In PP, layer 0 has ids as inputs, all other layers have hidden_states as inputs if self.mapping.is_first_pp_rank(): hidden_states = self.embedding(decoder_input_ids, position_ids, token_type_ids) self.register_network_output('embedding_layer_output', hidden_states) else: hidden_states = recv(hidden_states, self.mapping.prev_pp_rank()) kv_cache_params.fill_none_tensor_list(len(self.decoder_layers)) if use_cache: presents = [] for i, (decoder_layer, past) in enumerate( zip(self.decoder_layers, kv_cache_params.past_key_value)): lora_layer_params = None if lora_params is not None and lora_params.lora_ranks is not None: lora_layer_params = lora_params.get_layer_params(i) hidden_states = decoder_layer( hidden_states, encoder_output=encoder_output, attention_mask_params=attention_mask_params, use_cache=use_cache, kv_cache_params=KeyValueCacheParams( past_key_value=past, host_past_key_value_lengths=kv_cache_params. host_past_key_value_lengths, host_max_attention_window_sizes=kv_cache_params. host_max_attention_window_sizes, host_sink_token_length=kv_cache_params. host_sink_token_length, cache_indirection=kv_cache_params.cache_indirection, kv_cache_block_offsets=kv_cache_params. kv_cache_block_offsets, host_kv_cache_block_offsets=kv_cache_params. host_cross_kv_cache_block_offsets, host_kv_cache_pool_pointers=kv_cache_params. host_kv_cache_pool_pointers, host_kv_cache_pool_mapping=kv_cache_params. host_kv_cache_pool_mapping, cross_kv_cache_block_offsets=kv_cache_params. cross_kv_cache_block_offsets, host_cross_kv_cache_block_offsets=kv_cache_params. host_cross_kv_cache_block_offsets, host_cross_kv_cache_pool_pointers=kv_cache_params. host_cross_kv_cache_pool_pointers, host_cross_kv_cache_pool_mapping=kv_cache_params. host_cross_kv_cache_pool_mapping), attention_params=attention_params, lora_layer_params=lora_layer_params, cross_kv_cache_gen=cross_kv_cache_gen, cross_kv_reuse=cross_kv_reuse) if use_cache: presents_self, presents_cross = hidden_states[1], hidden_states[ 2] presents.append((presents_self, presents_cross)) hidden_states = hidden_states[0] self.register_network_output(f'decoder_layer_{i}_output', hidden_states) if self.mapping.is_last_pp_rank(): if self.has_model_final_layernorm: hidden_states = self.final_layernorm(hidden_states) # [bs, seq, hidden_size] or [num_tokens, hidden_size] -> [bs, hidden_size] hidden_states = gather_last_token_logits( hidden_states, last_token_ids, default_net().plugin_config.remove_input_padding) self.register_network_output('logits_before_lmhead', hidden_states) # Rescale output before projecting on vocab (for T5) # See https://github.com/huggingface/transformers/blob/0b192de1f353b0e04dad4813e02e2c672de077be/src/transformers/models/t5/modeling_t5.py#L1769-L1772 # Note: this is specific for T5, to make it more generic, one can pass in a config: # self.config.tie_word_embeddings - default to be True for T5 # openai whisper model didn't use this rescale if self.rescale_before_lm_head: hidden_states = hidden_states * (self.hidden_size**-0.5) # [bs, hidden_size] -> [bs, vocab_size] lm_logits = self.lm_head(hidden_states) lm_logits.mark_output('logits', self._logits_dtype) else: hidden_states = send(hidden_states, self.mapping.next_pp_rank()) hidden_states.mark_output('hidden_states_output', self._dtype) if use_cache and default_net().plugin_config.paged_kv_cache == False: for i, present in zip(self.mapping.pp_layers(self.total_num_layers), presents): present[0].mark_output(f'present_key_value_{i}', self._kv_dtype) if default_net().plugin_config.gpt_attention_plugin: present[1].mark_output(f'cross_present_key_value_{i}', self._kv_dtype) if self.mapping.is_last_pp_rank(): return (lm_logits, tuple(presents)) return (hidden_states, tuple(presents)) else: if self.mapping.is_last_pp_rank(): return lm_logits return hidden_states
[docs] def prepare_inputs(self, max_batch_size, max_beam_width, max_decoder_input_len, max_seq_len, max_encoder_input_len, gather_context_logits: bool = False, gather_generation_logits: bool = False, lora_target_modules: List[str] = None, use_cache=True, *args, **kwargs): '''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the ranges of the dimensions of when using TRT dynamic shapes. @return: a list contains values which can be fed into the self.forward() ''' # Prepare inputs max_output_len = max_decoder_input_len + max_seq_len head_size = self.head_size num_kv_heads = (self.num_kv_heads + self.mapping.tp_size - 1) // self.mapping.tp_size encoder_head_size = self.encoder_head_size encoder_num_kv_heads = (self.encoder_num_kv_heads + self.mapping.tp_size - 1) // self.mapping.tp_size bb_range = [ 1, (max_batch_size * max_beam_width + 1) // 2, max_batch_size * max_beam_width ] bs_range = [1, (max_batch_size + 1) // 2, max_batch_size] beam_width_range = [1, (max_beam_width + 1) // 2, max_beam_width] inlen_range = [ 1, 1, max_decoder_input_len ] # context phase >= 1 (if forced_input_ids), generation phase = 1 encoder_inlen_range = [ 1, (max_encoder_input_len + 1) // 2, max_encoder_input_len ] mask_len_range = [1, (max_output_len + 1) // 2 + 1, max_output_len + 1] max_output_len_range = [0, (max_output_len + 1) // 2, max_output_len] encoder_num_tokens_range = [ 0, # 0 for generation phase, >0 for context phase (max_encoder_input_len * max_batch_size + 1) // 2, max_encoder_input_len * max_batch_size, ] decoder_num_tokens_range = [ 1, max_batch_size * max_beam_width, max(max_decoder_input_len * max_batch_size, max_beam_width * max_batch_size), ] # No enable_two_optimization_profiles support yet encoder_input_len_range = [ 0, # 0 for generation phase, >0 for context phase (max_encoder_input_len + 1) // 2, max_encoder_input_len ] max_cross_packed_mask_dim0 = max_batch_size * ( (max_decoder_input_len + 128 - 1) // 128) * 128 max_cross_packed_mask_dim1 = ( (max_encoder_input_len + 256 - 1) // 256) * 256 // 32 cross_packed_mask_dim0_range = [ 1, (max_cross_packed_mask_dim0 + 1) // 2, max_cross_packed_mask_dim0 ] cross_packed_mask_dim1_range = [ 0, # 0 for generation phase, >0 for context phase (max_cross_packed_mask_dim1 + 1) // 2, max_cross_packed_mask_dim1 ] past_key_value = [] sequence_length = None host_past_key_value_lengths = None runtime_perf_knobs = None context_progress = None attention_mask = None cross_attention_mask = None cross_attention_packed_mask = None attention_mask_params = AttentionMaskParams() use_gpt_attention_plugin = default_net( ).plugin_config.gpt_attention_plugin remove_input_padding = default_net().plugin_config.remove_input_padding paged_kv_cache = default_net().plugin_config.paged_kv_cache tokens_per_block = default_net().plugin_config.tokens_per_block use_lora_plugin = default_net().plugin_config.lora_plugin input_ids, position_ids, token_type_ids, hidden_states = None, None, None, None if remove_input_padding: if self.mapping.is_first_pp_rank(): input_ids = Tensor(name='input_ids', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([ ('decoder_num_tokens', [decoder_num_tokens_range]), ])) if self.has_position_embedding: position_ids = Tensor(name='position_ids', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([ ('decoder_num_tokens', [decoder_num_tokens_range]), ])) if self.has_token_type_embedding: token_type_ids = Tensor( name='token_type_ids', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([('decoder_num_tokens', [decoder_num_tokens_range])]), ) else: hidden_states = Tensor(name='hidden_states_input', dtype=self._dtype, shape=[-1, self.hidden_size], dim_range=OrderedDict([ ('decoder_num_tokens', [decoder_num_tokens_range]), ('hidden_size', [self.hidden_size]), ])) else: if self.mapping.is_first_pp_rank(): input_ids = Tensor(name='input_ids', dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([ ('batch_size_beam_width', [bb_range]), ('input_len', [inlen_range]), ])) if self.has_position_embedding: position_ids = Tensor(name='position_ids', dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([ ('batch_size_beam_width', [bb_range]), ('input_len', [inlen_range]), ])) if self.has_token_type_embedding: token_type_ids = Tensor( name='token_type_ids', dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([('batch_size_beam_width', [bb_range]), ('input_len', [inlen_range])]), ) else: hidden_states = Tensor(name='hidden_states_input', dtype=self._dtype, shape=[-1, -1, self.hidden_size], dim_range=OrderedDict([ ('batch_size_beam_width', [bb_range ]), ('input_len', [inlen_range]), ('hidden_size', [self.hidden_size]), ])) encoder_input_lengths = Tensor( name="encoder_input_lengths", dtype=trt.int32, shape=[-1], dim_range=OrderedDict([("batch_size_beam_width", [bb_range])]), ) encoder_max_input_length = Tensor( name="encoder_max_input_length", dtype=trt.int32, shape=[-1], dim_range=OrderedDict([("encoder_max_input_length", [encoder_inlen_range])]), ) encoder_output = None if remove_input_padding: encoder_output = Tensor( name="encoder_output", dtype=self._dtype, shape=[-1, self.encoder_hidden_size], dim_range=OrderedDict([ ("encoder_num_tokens", [encoder_num_tokens_range]), ("encoder_hidden_size", [self.encoder_hidden_size]), ]), ) else: encoder_output = Tensor( name="encoder_output", dtype=self._dtype, shape=[-1, -1, self.encoder_hidden_size], dim_range=OrderedDict([ ("batch_size_beam_width_encoder", [bb_range]), ("encoder_input_len", [encoder_input_len_range]), ("encoder_hidden_size", [self.encoder_hidden_size]), ]), ) if use_gpt_attention_plugin: host_past_key_value_lengths = Tensor( name='host_past_key_value_lengths', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([('batch_size_beam_width', [bb_range])]), ) context_lengths = None host_context_lengths = None host_request_types = None if use_gpt_attention_plugin and remove_input_padding: host_context_lengths = Tensor(name='host_context_lengths', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([ ('batch_size_beam_width', [bb_range]) ])) if use_gpt_attention_plugin: sequence_length = Tensor( name='sequence_length', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([('batch_size_beam_width', [bb_range])]), ) context_lengths = Tensor(name='context_lengths', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([ ('batch_size_beam_width', [bb_range]) ])) host_request_types = Tensor(name='host_request_types', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([ ('batch_size_beam_width', [bb_range]) ])) runtime_perf_knobs = Tensor(name='host_runtime_perf_knobs', dtype=trt.int64, shape=[16], dim_range=OrderedDict([ ('perf_knob_size', [16]) ])) context_progress = Tensor(name='host_context_progress', dtype=trt.int64, shape=[1], dim_range=OrderedDict([ ('context_progress_size', [1]) ])) last_token_ids = None if self.mapping.is_last_pp_rank() and not gather_context_logits: last_token_ids = Tensor( name="last_token_ids", dtype=trt.int32, shape=[-1], dim_range=OrderedDict([("batch_size_last_token_ids", [bb_range]) ]), ) if not use_gpt_attention_plugin: attention_mask = Tensor( name='attention_mask', dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([ ('batch_size_beam_width', [bb_range]), ('mask_len', [mask_len_range]), ]), ) cross_attention_mask = Tensor( name='cross_attention_mask', dtype=trt.int32, shape=[-1, -1, -1], dim_range=OrderedDict([ ('batch_size_beam_width', [bb_range]), ('query_len', [1]), ('encoder_input_len_2', [encoder_input_len_range]), ]), ) else: cross_attention_mask = Tensor( name='cross_attention_mask', dtype=trt.bool, shape=[-1, -1], dim_range=OrderedDict([ ('decoder_num_tokens_2', [decoder_num_tokens_range ]), # TODO (bhsueh) should use same name as input_ids ('encoder_input_len_2', [encoder_input_len_range]), ]), ) cross_attention_packed_mask = Tensor( name='cross_attention_packed_mask', dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([ ('cross_packed_mask_dim0', [cross_packed_mask_dim0_range]), ('cross_packed_mask_dim1', [cross_packed_mask_dim1_range]), ]), ) # create the attention_mask_params. attention_mask_params = AttentionMaskParams( attention_mask, None, cross_attention_mask, cross_attention_packed_mask) cache_indirection = Tensor( name='cache_indirection', dtype=trt.int32, shape=[-1, -1, -1], dim_range=OrderedDict([ ('batch_size_cache', [bs_range]), ('beam_width', [beam_width_range]), ('max_seq_len', [max_output_len_range]), ]), ) if self.mapping.tp_size > 1: current_all_reduce_helper().set_workspace_tensor(self.mapping, 1) layers_range = self.mapping.pp_layers(self.total_num_layers) num_pp_layers = len(layers_range) host_max_attention_window_sizes = None host_sink_token_length = None if use_gpt_attention_plugin: host_max_attention_window_sizes = Tensor( name=f'host_max_attention_window_sizes', dtype=trt.int32, shape=[num_pp_layers], dim_range=OrderedDict([('num_layers', [num_pp_layers])])) host_sink_token_length = Tensor(name='host_sink_token_length', dtype=trt.int32, shape=[1], dim_range=OrderedDict([('scalar', [1])])) ''' LoRA plugin related inputs: lora_target_modules for BART-decoder: ['attn_q', 'cross_attn_q', 'attn_v', 'cross_attn_v'] This is NOT directly loaded from the adapter-config file We make it this way because BART has LoRA weights for both self-attention and cross-attention in decoder ''' lora_weights_pointers = None lora_ranks = None lora_params = None if use_lora_plugin: lora_weights_pointers = [] lora_ranks = [] # In current design, q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time. # However, BART lora modules only contain two of them, so we use zero tensor to fill the missing ones. missing_qkv_modules = [] if any(x in lora_target_modules for x in ["attn_q", "attn_k", "attn_v"]): for lora_module in [ "attn_q", "attn_k", "attn_v", ]: if lora_module not in lora_target_modules: missing_qkv_modules.append(lora_module) if any(x in lora_target_modules for x in ["cross_attn_q", "cross_attn_k", "cross_attn_v"]): for lora_module in [ "cross_attn_q", "cross_attn_k", "cross_attn_v" ]: if lora_module not in lora_target_modules: missing_qkv_modules.append(lora_module) for i in layers_range: lora_weight_pointer_dict = {} lora_rank_dict = {} for lora_module in (lora_target_modules + missing_qkv_modules): lora_weight_pointer = Tensor( name=f'{lora_module}_lora_weights_pointers_{i}', dtype=trt.int64, shape=[-1, 2], dim_range=OrderedDict([('batch_size_beam_width', [bb_range]), ('in_out', [2])])) lora_weight_pointer_dict.update({ f'{lora_module}_lora_weights_pointers': lora_weight_pointer }) lora_rank = Tensor(name=f'{lora_module}_lora_ranks_{i}', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([ ('batch_size_beam_width', [bb_range]) ])) lora_rank_dict.update( {f'{lora_module}_lora_ranks': lora_rank}) lora_weights_pointers.append(lora_weight_pointer_dict) lora_ranks.append(lora_rank_dict) # For cross attention, we need to use encoder_input_lengths (in CPU) to pass # as the host_context_lengths to the lora_plugin. But for self attention, we # should keep using the original host_context_lengths. Therefore, we keep both # of them in the lora_params. host_encoder_input_lengths = None if remove_input_padding: host_encoder_input_lengths = Tensor( name="host_encoder_input_lengths", dtype=trt.int32, shape=[-1], dim_range=OrderedDict([("batch_size_beam_width", [bb_range]) ]), ) lora_params = LoraParams( lora_ranks=lora_ranks, lora_weights_pointers=lora_weights_pointers, host_context_lengths=host_context_lengths, max_encoder_context_length=max_encoder_input_len, host_request_types=host_request_types, host_encoder_input_lengths=host_encoder_input_lengths, ) kv_cache_block_offsets = None host_kv_cache_block_offsets = None host_kv_cache_pool_pointers = None host_kv_cache_pool_mapping = None cross_kv_cache_block_offsets = None host_cross_kv_cache_block_offsets = None host_cross_kv_cache_pool_pointers = None host_cross_kv_cache_pool_mapping = None if use_cache: if not paged_kv_cache: for i in layers_range: kv_dim_range = OrderedDict([ ('batch_size_beam_width', [bb_range]), ('kv', [2]), ('num_heads', [num_kv_heads]), ('past_key_len', [max_output_len_range]), ('head_size', [head_size]), ]) kv = Tensor(name=f'past_key_value_{i}', dtype=self._kv_dtype, shape=[-1, 2, num_kv_heads, -1, head_size], dim_range=kv_dim_range) if use_gpt_attention_plugin: cross_kv_dim_range = OrderedDict([ ('batch_size_beam_width', [bb_range]), ('kv', [2]), ('cross_num_heads', [encoder_num_kv_heads]), ('cross_past_key_len', [encoder_input_len_range]), ('cross_head_size', [encoder_head_size]), ]) cross_kv = Tensor(name=f'cross_past_key_value_{i}', dtype=self._kv_dtype, shape=[ -1, 2, encoder_num_kv_heads, -1, encoder_head_size ], dim_range=cross_kv_dim_range) past_key_value.append((kv, cross_kv)) else: # use encoder_output directly, no need to save cross_past_key_value past_key_value.append((kv, )) # TODO: Remove this when TRT fix the named dimension if not remove_input_padding: assertion( shape( input_ids if self.mapping.is_first_pp_rank() else hidden_states, 0) == shape(kv, 0), 'batch size') else: # paged_kv_cache == True # PagedKV setup for KV cache of self-attention max_blocks_per_seq_range = [[ math.ceil(max_output_len_range[0] / tokens_per_block), math.ceil(max_output_len_range[1] / tokens_per_block), math.ceil(max_output_len_range[2] / tokens_per_block) ]] max_blocks_per_seq_range = [[ x for x in max_blocks_per_seq_range[0] ]] # PagedKV setup for KV cache of cross-attention max_cross_blocks_per_seq_range = [[ math.ceil(encoder_input_len_range[0] / tokens_per_block), math.ceil(encoder_input_len_range[1] / tokens_per_block), math.ceil(encoder_input_len_range[2] / tokens_per_block) ]] max_cross_blocks_per_seq_range = [[ x for x in max_cross_blocks_per_seq_range[0] ]] # TODO(oargov): add support for vgqa, meanwhile assume a single kv cache pool num_kv_cache_pools = 1 kv_cache_block_offsets = Tensor( name=f'kv_cache_block_offsets', dtype=trt.int32, shape=[num_kv_cache_pools, -1, 2, -1], dim_range=OrderedDict([ ('num_kv_cache_pools', [num_kv_cache_pools]), ('batch_size_beam_width', [bb_range]), ('kv', [2]), ('max_blocks_per_seq', max_blocks_per_seq_range), ])) host_kv_cache_block_offsets = Tensor( name=f'host_kv_cache_block_offsets', dtype=trt.int32, shape=[num_kv_cache_pools, -1, 2, -1], dim_range=OrderedDict([ ('num_kv_cache_pools', [num_kv_cache_pools]), ('batch_size_beam_width', [bb_range]), ('kv', [2]), ('max_blocks_per_seq', max_blocks_per_seq_range), ])) host_kv_cache_pool_pointers = Tensor( name=f'host_kv_cache_pool_pointers', dtype=trt.int64, shape=[num_kv_cache_pools, 2], dim_range=OrderedDict([ ('num_pools_layers', [num_kv_cache_pools]), ('num_pools_kv', [2]), ])) host_kv_cache_pool_mapping = Tensor( name=f"host_kv_cache_pool_mapping", dtype=trt.int32, shape=[num_pp_layers], dim_range=OrderedDict([ ('pools_mapping', [num_pp_layers]), ])) # paged blocks for cross kv cross_kv_cache_block_offsets = Tensor( name=f'cross_kv_cache_block_offsets', dtype=trt.int32, shape=[num_kv_cache_pools, -1, 2, -1], dim_range=OrderedDict([ ('num_kv_cache_pools', [num_kv_cache_pools]), ('batch_size_beam_width', [bb_range]), ('kv', [2]), ('max_cross_blocks_per_seq', max_cross_blocks_per_seq_range), ])) host_cross_kv_cache_block_offsets = Tensor( name=f'host_cross_kv_cache_block_offsets', dtype=trt.int32, shape=[num_kv_cache_pools, -1, 2, -1], dim_range=OrderedDict([ ('num_kv_cache_pools', [num_kv_cache_pools]), ('batch_size_beam_width', [bb_range]), ('kv', [2]), ('max_cross_blocks_per_seq', max_cross_blocks_per_seq_range), ])) host_cross_kv_cache_pool_pointers = Tensor( name=f'host_cross_kv_cache_pool_pointers', dtype=trt.int64, shape=[num_kv_cache_pools, 2], dim_range=OrderedDict([ ('num_kv_cache_pools', [num_kv_cache_pools]), ('num_pools', [2]), ])) host_cross_kv_cache_pool_mapping = Tensor( name=f"host_cross_kv_cache_pool_mapping", dtype=trt.int32, shape=[num_pp_layers], dim_range=OrderedDict([ ('pools_mapping', [num_pp_layers]), ])) for i in layers_range: past_key_value.append(None) kv_cache_params = KeyValueCacheParams( past_key_value=past_key_value, host_past_key_value_lengths=host_past_key_value_lengths, host_max_attention_window_sizes=host_max_attention_window_sizes, host_sink_token_length=host_sink_token_length, cache_indirection=cache_indirection, kv_cache_block_offsets=kv_cache_block_offsets, host_kv_cache_block_offsets=host_kv_cache_block_offsets, host_kv_cache_pool_pointers=host_kv_cache_pool_pointers, host_kv_cache_pool_mapping=host_kv_cache_pool_mapping, cross_kv_cache_block_offsets=cross_kv_cache_block_offsets, host_cross_kv_cache_block_offsets= host_cross_kv_cache_block_offsets, host_cross_kv_cache_pool_pointers= host_cross_kv_cache_pool_pointers, host_cross_kv_cache_pool_mapping= host_cross_kv_cache_pool_mapping, ) attention_params = AttentionParams( sequence_length=sequence_length, context_lengths=context_lengths, host_context_lengths=host_context_lengths, max_context_length=max_decoder_input_len, host_request_types=host_request_types, encoder_input_lengths=encoder_input_lengths, encoder_max_input_length=encoder_max_input_length, host_runtime_perf_knobs=runtime_perf_knobs, host_context_progress=context_progress) cross_kv_cache_gen = Tensor(name='cross_kv_cache_gen', dtype=trt.bool, shape=[1], dim_range=OrderedDict([ ('boolean', [1]), ])) cross_kv_reuse = None num_heads = (self.num_heads + self.mapping.tp_size - 1) // self.mapping.tp_size cross_kv_out_dim = 2 * num_kv_heads * self.head_size if self.skip_cross_kv: if remove_input_padding: cross_kv_reuse = Tensor( name="cross_kv_reuse", dtype=self._dtype, shape=[-1, cross_kv_out_dim], dim_range=OrderedDict([ ("encoder_num_tokens", [encoder_num_tokens_range]), ("encoder_kv_size", [cross_kv_out_dim]), ]), ) else: cross_kv_reuse = Tensor( name="cross_kv_reuse", dtype=self._dtype, shape=[-1, -1, cross_kv_out_dim], dim_range=OrderedDict([ ("batch_size_beam_width_encoder", [bb_range]), ("encoder_input_len", [encoder_input_len_range]), ("encoder_kv_size", [cross_kv_out_dim]), ]), ) result = { 'decoder_input_ids': input_ids, 'encoder_output': encoder_output, 'position_ids': position_ids, 'token_type_ids': token_type_ids, 'use_cache': True, 'attention_mask_params': attention_mask_params, 'last_token_ids': last_token_ids, 'kv_cache_params': kv_cache_params, 'attention_params': attention_params, 'hidden_states': hidden_states, 'lora_params': lora_params, 'cross_kv_cache_gen': cross_kv_cache_gen, 'cross_kv_reuse': cross_kv_reuse, } return result
[docs] def use_lora(self, lora_config: LoraConfig): use_lora(self, lora_config, self.trtllm_modules_to_hf_modules)
[docs] def precompute_relative_attention_bias(self, build_config): if self.config.relative_attention and not self.use_implicit_relative_attention: relative_attention_bias_builder = torch.ops.tensorrt_llm.relative_attention_bias rel_attn_precomputed = torch.zeros( (self.config.num_attention_heads // self.mapping.tp_size, build_config.max_seq_len + 1, build_config.max_seq_len + 1), dtype=str_dtype_to_torch(self.config.dtype), device='cuda') rel_attn_table = numpy_to_torch( self.rel_attn_table.raw_value).to('cuda') relative_attention_bias_builder( rel_attn_precomputed, rel_attn_table, self.config.num_attention_heads // self.mapping.tp_size, build_config.max_seq_len, self.config.num_buckets, False, self.config.max_distance, ) for layer_idx in range(self.num_layers): self.decoder_layers[ layer_idx].self_attention.set_rel_attn_table( build_config.max_seq_len, rel_attn_precomputed)
[docs] class WhisperEncoder(PretrainedModel): def __init__(self, config: PretrainedConfig): super().__init__(config) self._dtype = self.config.dtype # Encoder conv needs to run in fp32 on Volta/Turing major, minor = torch.cuda.get_device_capability() if major >= 8: self._conv_dtype = self._dtype else: self._conv_dtype = "float32" self.conv1 = Conv1d(config.n_mels, config.hidden_size, kernel_size=3, padding=1, dtype=self._conv_dtype) self.conv2 = Conv1d(config.hidden_size, config.hidden_size, kernel_size=3, stride=2, padding=1, dtype=self._conv_dtype) self.position_embedding = Embedding(self.config.max_position_embeddings, self.config.hidden_size, dtype=self.config.dtype) self.encoder_layers = ModuleList([ EncoderLayer( hidden_size=config.hidden_size, ffn_hidden_size=config.hidden_size * 4, num_attention_heads=config.num_attention_heads, num_kv_heads=config.num_attention_heads, head_size=config.hidden_size // config.num_attention_heads, q_scaling=1.0, has_attention_qkvo_bias=True, has_mlp_bias=True, hidden_act='gelu', dtype=self._dtype) for _ in range(config.num_hidden_layers) ]) self.ln_post = LayerNorm(config.hidden_size, dtype=self._dtype) self.max_audio_feature_seq_len = 3000 self.downsample_factor = 2
[docs] def forward(self, input_features: Tensor, input_lengths=None, position_ids=None): if default_net().plugin_config.remove_input_padding: # BXT,D -> 1,BxT,D -> 1,D,BxT input_features = unsqueeze(input_features, 0) input_features = transpose(input_features, 1, 2) # Encoder conv needs to run in fp32 on Volta/Turing x_type = input_features.dtype input_features = cast(input_features, self._conv_dtype) x = self.conv1(input_features) x = gelu(x) x = self.conv2(x) x = cast(x, x_type) x = gelu(x) x = transpose(x, 2, 1) x = x + cast(self.position_embedding(position_ids), x.dtype) if default_net().plugin_config.remove_input_padding: #B,T,D -> BxT,D x = x.view([-1, self.config.hidden_size]) hidden_states = x input_lengths = input_lengths // self.downsample_factor for encoder_layer in self.encoder_layers: hidden_states = encoder_layer(hidden_states, input_lengths=input_lengths) x = hidden_states x = self.ln_post(x) x.mark_output('encoder_output', self._dtype) return x
[docs] def prepare_inputs(self, max_batch_size=16): bs_range = [1, (max_batch_size + 1) // 2, max_batch_size] min_feat_len, optimal_feat_len = 10, 1000 # 100ms, 10s inlen_range = [ min_feat_len, optimal_feat_len, self.max_audio_feature_seq_len ] inlen_range_after_downsample = [ min_feat_len // self.downsample_factor, optimal_feat_len // self.downsample_factor, self.max_audio_feature_seq_len // self.downsample_factor ] if not default_net().plugin_config.remove_input_padding: x = Tensor(name="input_features", dtype=self._dtype, shape=[-1, self.config.n_mels, -1], dim_range=OrderedDict([ ("batch_size", [bs_range]), ("feature_dim", [self.config.n_mels]), ("feature_len_range", [inlen_range]), ])) position_ids = Tensor( name='position_ids', dtype=trt.int32, shape=[-1, -1], dim_range=OrderedDict([('batch_size', [bs_range]), ('feature_len_downsample_range', [inlen_range_after_downsample])]), ) else: batch_seqlen_range = [ 1, (self.max_audio_feature_seq_len * max_batch_size + 1) // 2, self.max_audio_feature_seq_len * max_batch_size, ] batch_seqlen_downsample_range = [ 1, (self.max_audio_feature_seq_len // self.downsample_factor * max_batch_size + 1) // 2, self.max_audio_feature_seq_len // self.downsample_factor * max_batch_size, ] x = Tensor(name="input_features", dtype=self._dtype, shape=[-1, self.config.n_mels], dim_range=OrderedDict([ ("batch_seqlen_range", [batch_seqlen_range]), ("feature_dim", [self.config.n_mels]), ])) position_ids = Tensor( name='position_ids', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([('batch_seqlen_downsample_range', [batch_seqlen_downsample_range])]), ) input_lengths = Tensor( name="input_lengths", dtype=trt.int32, shape=[-1], dim_range=OrderedDict([("batch_size", [bs_range])]), ) return { 'input_features': x, 'input_lengths': input_lengths, 'position_ids': position_ids }
[docs] def precompute_relative_attention_bias(self, build_config): pass