Source code for tensorrt_llm.models.falcon.config

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union

import torch

from ..._utils import torch_dtype_to_str
from ...logger import logger
from ...mapping import Mapping
from ..modeling_utils import PretrainedConfig, QuantConfig


[docs] class FalconConfig(PretrainedConfig): def __init__(self, *, bias: bool = False, parallel_attention: bool = False, num_ln_in_parallel_attn: int | None = None, new_decoder_architecture: bool = False, rotary_base: float = 10000.0, **kwargs): self.bias = bias self.parallel_attention = parallel_attention self.num_ln_in_parallel_attn = num_ln_in_parallel_attn self.new_decoder_architecture = new_decoder_architecture self.rotary_base = rotary_base super().__init__(**kwargs)
[docs] def to_dict(self): output = super().to_dict() # Serialize the fields added in LLaMAConfig output['bias'] = self.bias output['parallel_attention'] = self.parallel_attention output['new_decoder_architecture'] = self.new_decoder_architecture return output
[docs] @classmethod def from_hugging_face( cls, hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers trust_remote_code = kwargs.pop('trust_remote_code', True) if isinstance(hf_config_or_dir, transformers.PretrainedConfig): hf_config = hf_config_or_dir else: hf_config_dir = str(hf_config_or_dir) hf_config = transformers.AutoConfig.from_pretrained( hf_config_dir, trust_remote_code=trust_remote_code) # Falcon-7B config may not have num_kv_heads or n_head_kv. # Although Falcon-180B uses GQA (num_kv_heads=8), its config # has multi_query=True. if getattr(hf_config, 'multi_query', False) and not getattr( hf_config, 'new_decoder_architecture', False): hf_config.num_kv_heads = 1 if hf_config.model_type == 'RefinedWeb': # Case 1. Falcon-40B / Falcon-40B-instruct # https://huggingface.co/tiiuae/falcon-40b/blob/main/config.json hf_config.num_hidden_layers = hf_config.n_layer hf_config.num_attention_heads = hf_config.n_head hf_config.num_kv_heads = hf_config.n_head_kv hf_config.new_decoder_architecture = True elif hf_config.model_type == 'RefinedWebModel': # Case 2. Falcon-7B / Falcon-7B-instruct # https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json hf_config.num_hidden_layers = hf_config.n_layer hf_config.num_attention_heads = hf_config.n_head hf_config.num_kv_heads = 1 if hf_config.multi_query else hf_config.n_head hf_config.new_decoder_architecture = False elif hf_config.model_type != 'falcon': raise ValueError("Shouldn't reach here.") hf_config.model_type = 'falcon' if dtype == 'auto': dtype = getattr(hf_config, 'torch_dtype', None) if dtype is None: dtype = 'float16' if isinstance(dtype, torch.dtype): dtype = torch_dtype_to_str(dtype) if dtype == 'float32': dtype = 'float16' if dtype == 'bfloat16' and torch.cuda.get_device_properties( 0).major < 8: logger.warning( "Pre SM 80 GPUs do not support bfloat16, fallback to float16") dtype = 'float16' return cls(architecture='FalconForCausalLM', dtype=dtype, num_hidden_layers=hf_config.num_hidden_layers, num_attention_heads=hf_config.num_attention_heads, num_key_value_heads=hf_config.num_kv_heads, hidden_size=hf_config.hidden_size, norm_epsilon=hf_config.layer_norm_epsilon, vocab_size=hf_config.vocab_size, position_embedding_type='alibi_with_scale' if hf_config.alibi else 'rope_gpt_neox', hidden_act='gelu', bias=hf_config.bias, parallel_attention=hf_config.parallel_attn, num_ln_in_parallel_attn=getattr(hf_config, 'num_ln_in_parallel_attn', None), new_decoder_architecture=hf_config.new_decoder_architecture, max_position_embeddings=getattr(hf_config, 'max_position_embeddings', 2048), rotary_base=getattr(hf_config, 'rope_theta', 10000.0), intermediate_size=getattr(hf_config, 'ffn_hidden_size', None), mapping=mapping, quantization=quant_config, **kwargs)