# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Optional, Union
from tensorrt_llm.functional import PositionEmbeddingType
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.convert_utils import infer_dtype
from tensorrt_llm.models.modeling_utils import (Gemma2ConfigGroup,
PretrainedConfig, QuantConfig)
if TYPE_CHECKING:
from os import PathLike
import transformers
HfConfigOrDir = Union[str, PathLike, transformers.PretrainedConfig]
GEMMA_ARCHITECTURE = "GemmaForCausalLM"
GEMMA2_ARCHITECTURE = "Gemma2ForCausalLM"
[docs]
class GemmaConfig(PretrainedConfig):
def __init__(
self,
*,
architecture: str,
rotary_base: float = 10000.0,
rotary_scaling: Optional[dict] = None,
attn_bias: bool = False,
mlp_bias: bool = False,
position_embedding_type: PositionEmbeddingType = PositionEmbeddingType.
rope_gpt_neox,
query_pre_attn_scalar: Optional[int] = None,
final_logit_softcapping: Optional[float] = None,
attn_logit_softcapping: Optional[float] = None,
mapping: Optional[Union[Mapping, dict]] = None,
**kwargs,
):
use_parallel_embedding = False
if mapping:
use_parallel_embedding = mapping.tp_size > 1 if isinstance(
mapping, Mapping) else mapping["tp_size"] > 1
if use_parallel_embedding != kwargs.pop("use_parallel_embedding", None):
"""
We always pass `bool(mapping.tp_size > 1)` - the passed value is `False` by default, and ignored either way.
We can't just raise an exception here, because this will force the user to explicitly pass `LLM(use_parallel_embedding=True)`.
"""
logger.debug(
f"Using `use_parallel_embedding={use_parallel_embedding}` for Gemma"
)
super().__init__(
architecture=architecture,
use_parallel_embedding=use_parallel_embedding,
rotary_base=rotary_base,
attn_bias=attn_bias,
mlp_bias=mlp_bias,
position_embedding_type=position_embedding_type,
mapping=mapping,
**kwargs,
)
self.rotary_base = rotary_base
self.rotary_scaling = rotary_scaling
self.attn_bias = attn_bias
self.mlp_bias = mlp_bias
self.inter_layernorms = False
if self.is_gemma_2:
self.inter_layernorms = True
assert query_pre_attn_scalar is not None, "Gemma2 models must configure `query_pre_attn_scalar`"
self.query_pre_attn_scalar = query_pre_attn_scalar
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
GEMMA_ADDED_FIELDS = {
"rotary_base", "rotary_scaling", "attn_bias", "mlp_bias",
"inter_layernorms"
}
GEMMA2_ADDED_FIELDS = Gemma2ConfigGroup.keys()
VERBATIM = {
"num_hidden_layers", "num_attention_heads", "hidden_size",
"intermediate_size", "vocab_size", "max_position_embeddings",
"hidden_act", "use_parallel_embedding"
} | GEMMA2_ADDED_FIELDS
@property
def is_gemma_2(self) -> bool:
return self.architecture == GEMMA2_ARCHITECTURE
[docs]
def gemma2_config(self):
if self.is_gemma_2:
return self.get_config_group(Gemma2ConfigGroup)
return None
[docs]
def to_dict(self):
"""Serialize the fields added in GemmaConfig"""
return {
**super().to_dict(),
**{f: getattr(self, f)
for f in self.GEMMA_ADDED_FIELDS},
**({f: getattr(self, f)
for f in self.GEMMA2_ADDED_FIELDS} if self.is_gemma_2 else {})
}
[docs]
@classmethod
def from_hugging_face(
cls,
hf_config_or_dir: "HfConfigOrDir",
dtype: str = "auto",
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs,
) -> "GemmaConfig":
import transformers
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
hf_config = hf_config_or_dir
else:
hf_config = transformers.GemmaConfig.from_pretrained(
hf_config_or_dir)
dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None))
assert isinstance(quant_config, QuantConfig) or quant_config is None
assert isinstance(mapping, Mapping) or mapping is None
return cls(
architecture=hf_config.architectures[0],
dtype=dtype,
head_size=hf_config.head_dim,
norm_epsilon=hf_config.rms_norm_eps,
num_key_value_heads=getattr(hf_config, "num_key_value_heads",
hf_config.num_attention_heads),
rotary_scaling=getattr(hf_config, "rotary_scaling", None),
quantization=quant_config,
mapping=mapping,
**{
k: v
for k, v in hf_config.to_dict().items() if k in cls.VERBATIM
},
**kwargs,
)