Source code for tensorrt_llm.models.gpt.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Union

from ..._utils import pad_vocab_size
from ...functional import (Tensor, is_gated_activation, non_gated_version, recv,
                           send)
from ...layers import (MLP, MOE, Attention, AttentionMaskType, ColumnLinear,
                       Embedding, GatedMLP, LayerNorm, MoeConfig,
                       PositionEmbeddingType)
from ...lora_manager import LoraConfig, use_lora
from ...mapping import Mapping
from ...module import Module
from ...quantization import QuantMode
from ...quantization.functional import quantize_fp8_per_token
from ...quantization.layers import Fp8RowwiseMLP
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
                              QuantConfig, check_share_embedding)
from .config import GPTConfig
from .convert import (load_hf_gpt, load_weights_from_hf_model,
                      load_weights_from_nemo)


def MLPFactory(hidden_size,
               ffn_hidden_size,
               hidden_act,
               bias=True,
               dtype=None,
               moe_config: MoeConfig = MoeConfig(),
               tp_group=None,
               tp_size=1,
               mapping=Mapping(),
               quant_mode=QuantMode(0),
               inner_layernorm=False,
               eps=1e-05):
    if moe_config.has_moe():
        return MOE(moe_config,
                   hidden_size,
                   ffn_hidden_size,
                   hidden_act,
                   mapping=mapping,
                   bias=bias,
                   dtype=dtype,
                   tp_group=tp_group,
                   tp_size=tp_size,
                   quant_mode=quant_mode)
    MLPClass = GatedMLP if is_gated_activation(hidden_act) else MLP
    hidden_act = non_gated_version(hidden_act)
    return MLPClass(
        hidden_size,
        ffn_hidden_size,
        hidden_act,
        bias,
        dtype,
        tp_group,
        tp_size,
        quant_mode,
        inner_layernorm=inner_layernorm,
        eps=eps,
    )


class GPTDecoderLayer(Module):

    def __init__(self, config: GPTConfig, layer_idx: int):
        super().__init__()
        self.layer_idx = layer_idx
        self.config = config

        tp_group = config.mapping.tp_group
        tp_size = config.mapping.tp_size
        tp_rank = config.mapping.tp_rank

        self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size,
                                         eps=config.norm_epsilon,
                                         dtype=config.dtype)

        layers_range = config.mapping.pp_layers(config.num_hidden_layers)
        local_layer_idx = layer_idx - layers_range[0]
        inner_layernorm = config.inner_layernorm if hasattr(
            config, "inner_layernorm") else False
        attention_head_size = config.head_size if hasattr(config,
                                                          "head_size") else None
        self.attention = Attention(
            local_layer_idx=local_layer_idx,
            hidden_size=config.hidden_size,
            num_attention_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            max_position_embeddings=config.max_position_embeddings,
            num_layers=config.num_hidden_layers,
            q_scaling=config.q_scaling,
            apply_query_key_layer_scaling=config.apply_query_key_layer_scaling,
            dtype=config.dtype,
            attention_mask_type=AttentionMaskType.causal,
            attention_head_size=attention_head_size,
            position_embedding_type=config.position_embedding_type,
            rotary_embedding_percentage=config.rotary_pct,
            rotary_embedding_base=config.rotary_base,
            rotary_embedding_scaling=config.rotary_scaling,
            bias=config.bias,
            tp_group=tp_group,
            tp_size=tp_size,
            tp_rank=tp_rank,
            quant_mode=config.quant_mode,
            qk_layernorm=config.qk_layernorm,
            inner_layernorm=inner_layernorm,
            eps=config.norm_epsilon)

        mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
        self.norm_before_bmm1 = config.norm_before_bmm1 if hasattr(
            config, "norm_before_bmm1") else False

        self.mlp = MLPFactory(hidden_size=config.hidden_size,
                              ffn_hidden_size=mlp_hidden_size,
                              hidden_act=config.hidden_act,
                              dtype=config.dtype,
                              bias=config.bias,
                              moe_config=config.moe,
                              tp_group=tp_group,
                              tp_size=tp_size,
                              mapping=config.mapping,
                              quant_mode=config.quant_mode,
                              inner_layernorm=inner_layernorm,
                              eps=config.norm_epsilon)

        self.post_layernorm = LayerNorm(normalized_shape=config.hidden_size,
                                        eps=config.norm_epsilon,
                                        dtype=config.dtype)

    def forward(self,
                hidden_states: Tensor,
                attention_mask=None,
                use_cache=False,
                kv_cache_params=None,
                attention_params=None,
                lora_layer_params=None,
                spec_decoding_params=None):

        assert isinstance(hidden_states, Tensor)

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        attention_output = self.attention(
            hidden_states,
            attention_mask=attention_mask,
            use_cache=use_cache,
            spec_decoding_params=spec_decoding_params,
            kv_cache_params=kv_cache_params,
            attention_params=attention_params,
            lora_layer_params=lora_layer_params,
            norm_before_bmm1=self.norm_before_bmm1)

        if use_cache:
            attention_output, presents = attention_output

        hidden_states = residual + attention_output

        residual = hidden_states
        hidden_states = self.post_layernorm(hidden_states)

        # Quantize per-token for fp8
        if isinstance(self.mlp, Fp8RowwiseMLP):
            hidden_states = quantize_fp8_per_token(hidden_states)

        hidden_states = self.mlp(hidden_states,
                                 lora_layer_params=lora_layer_params)

        hidden_states = residual + hidden_states

        if use_cache:
            return (hidden_states, presents)
        return hidden_states


[docs] class GPTModel(Module): def __init__(self, config: GPTConfig): super().__init__() self.mapping = config.mapping self.position_embedding_type = config.position_embedding_type if config.mapping.is_first_pp_rank(): self.vocab_embedding = Embedding(config.vocab_size, config.hidden_size, dtype=config.dtype) self.embedding_scale = config.embedding_scale if config.position_embedding_type == PositionEmbeddingType.learned_absolute: self.position_embedding = Embedding( num_embeddings=config.max_position_embeddings, embedding_dim=config.hidden_size, dtype=config.dtype) self.layers = DecoderLayerList(GPTDecoderLayer, config) if config.mapping.is_last_pp_rank(): self.ln_f = LayerNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype)
[docs] def forward(self, input_ids, position_ids, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, hidden_states=None, prompt_embedding_table=None, prompt_tasks=None, prompt_vocab_size=None, lora_params=None, spec_decoding_params=None): if self.mapping.is_first_pp_rank(): ptuning_args = [ prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if prompt_embedding_table is not None else [] hidden_states = self.vocab_embedding(input_ids, *ptuning_args) if self.embedding_scale is not None: hidden_states *= self.embedding_scale if self.position_embedding_type == PositionEmbeddingType.learned_absolute: hidden_states = hidden_states + self.position_embedding( position_ids) else: hidden_states = recv(hidden_states, self.mapping.prev_pp_rank()) hidden_states = self.layers(hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params, lora_params=lora_params, spec_decoding_params=spec_decoding_params) if use_cache: hidden_states, presents = hidden_states if self.mapping.is_last_pp_rank(): hidden_states = self.ln_f(hidden_states) else: hidden_states = send(hidden_states, self.mapping.next_pp_rank()) if use_cache: return (hidden_states, tuple(presents)) return hidden_states
[docs] class GPTForCausalLM(DecoderModelForCausalLM): config_class = GPTConfig def __init__(self, config: GPTConfig): transformer = GPTModel(config) if config.mapping.is_last_pp_rank(): vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) lm_head = ColumnLinear(config.hidden_size, vocab_size_padded, bias=False, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) else: lm_head = None self.trtllm_modules_to_hf_modules = { "attn_q": "q_proj", "attn_k": "k_proj", "attn_v": "v_proj", "attn_dense": "o_proj", "mlp_h_to_4h": "c_fc", "mlp_4h_to_h": "c_proj", } super().__init__(config, transformer, lm_head)
[docs] @classmethod def from_hugging_face( cls, hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): ''' Create a LLaMAForCausalLM object from give parameters ''' import transformers load_model_on_cpu = kwargs.pop('load_model_on_cpu', False) assert hf_model_or_dir is not None use_preloading = isinstance(hf_model_or_dir, transformers.PreTrainedModel) if use_preloading: hf_model = hf_model_or_dir hf_config_or_dir = hf_model.config else: hf_model_dir = hf_model_or_dir hf_config_or_dir = hf_model_or_dir config = GPTConfig.from_hugging_face(hf_config_or_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, **kwargs) if not use_preloading: hf_model = load_hf_gpt(hf_model_dir, load_model_on_cpu) weights = load_weights_from_hf_model(hf_model, config) check_share_embedding(weights, config) model = cls(config) model.load(weights) return model
[docs] @classmethod def quantize( cls, hf_model_dir: str, output_dir: str, dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, *, device: str = 'cuda', calib_dataset: str = 'cnn_dailymail', calib_batches: int = 512, calib_batch_size: int = 1, calib_max_seq_length: int = 512, random_seed: int = 1234, tokenizer_max_seq_length: int = 2048, **kwargs, ): if quant_config.requires_modelopt_quantization: # modelopt quantization flow super().quantize(hf_model_dir, output_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, device=device, calib_dataset=calib_dataset, calib_batches=calib_batches, calib_batch_size=calib_batch_size, calib_max_seq_length=calib_max_seq_length, random_seed=random_seed, tokenizer_max_seq_length=tokenizer_max_seq_length) elif quant_config.requires_calibration: # non-modelopt quantization flow from . import convert config = GPTConfig.from_hugging_face(hf_model_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, **kwargs) convert.quantize(hf_model_dir, output_dir, config=config, device=device, calib_dataset=calib_dataset) else: raise ValueError( f"The quant_config ({quant_config}) does not require calibration, try {cls.__name__}.from_hugging_face instead." )
[docs] @classmethod def from_nemo(cls, nemo_ckpt_dir: str, dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): config = GPTConfig.from_nemo(nemo_ckpt_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, **kwargs) weights = load_weights_from_nemo(nemo_ckpt_dir, config, **kwargs) check_share_embedding(weights, config) model = cls(config) model.load(weights) return model
[docs] def use_lora(self, lora_config: LoraConfig): use_lora(self, lora_config, self.trtllm_modules_to_hf_modules)