Source code for tensorrt_llm.models.gptj.config

from typing import Mapping, Optional, Union

import torch

from ..._utils import torch_dtype_to_str
from ...mapping import Mapping
from ..modeling_utils import PretrainedConfig, QuantConfig


[docs] class GPTJConfig(PretrainedConfig): """ This is the configuration class to store the configuration of GPTJ model. """ def __init__(self, *, rotary_dim: int = 64, **kwargs): self.rotary_dim = rotary_dim super().__init__(**kwargs)
[docs] def to_dict(self): output = super().to_dict() output.update(rotary_dim=self.rotary_dim) return output
[docs] @classmethod def from_hugging_face( cls, hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers trust_remote_code = kwargs.pop('trust_remote_code', True) if isinstance(hf_config_or_dir, transformers.PretrainedConfig): hf_config = hf_config_or_dir else: hf_config_dir = str(hf_config_or_dir) hf_config = transformers.AutoConfig.from_pretrained( hf_config_dir, trust_remote_code=trust_remote_code) if dtype == 'auto': dtype = getattr(hf_config, 'torch_dtype', None) if dtype is None: dtype = 'float16' if isinstance(dtype, torch.dtype): dtype = torch_dtype_to_str(dtype) if dtype == 'float32': dtype = 'float16' return cls(architecture=hf_config.architectures[0], dtype=dtype, num_hidden_layers=hf_config.num_hidden_layers, num_attention_heads=hf_config.num_attention_heads, hidden_size=hf_config.hidden_size, norm_epsilon=hf_config.layer_norm_epsilon, vocab_size=hf_config.vocab_size, position_embedding_type='rope_gptj', max_position_embeddings=hf_config.max_position_embeddings, hidden_act='gelu', rotary_dim=hf_config.rotary_dim, mapping=mapping, quantization=quant_config, **kwargs)