Source code for tensorrt_llm.models.llama.config

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
from pathlib import Path
from typing import Optional, Union

import torch

from ..._utils import torch_dtype_to_str
from ...layers import MoeConfig
from ...mapping import Mapping
from ..modeling_utils import PretrainedConfig, QuantConfig


[docs] class LLaMAConfig(PretrainedConfig): def __init__(self, *, mlp_bias: bool = False, attn_bias: bool = False, rotary_base: float = 10000.0, rotary_scaling: Optional[dict] = None, residual_mlp: bool = False, disable_weight_only_quant_plugin: bool = False, moe: Optional[Union[MoeConfig, dict]] = None, remove_duplicated_kv_heads: bool = False, **kwargs): self.mlp_bias = mlp_bias self.attn_bias = attn_bias self.rotary_base = rotary_base self.rotary_scaling = rotary_scaling self.residual_mlp = residual_mlp self.disable_weight_only_quant_plugin = disable_weight_only_quant_plugin if moe is None: # Legacy MOE config fields moe = MoeConfig( num_experts=kwargs.pop('moe_num_experts', 0), top_k=kwargs.pop('moe_top_k', 0), normalization_mode=kwargs.pop( 'moe_normalization_mode', MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE)) elif isinstance(moe, dict): moe = MoeConfig.from_dict(moe) assert isinstance(moe, MoeConfig) self.moe = moe.validate() self.remove_duplicated_kv_heads = remove_duplicated_kv_heads self.fc_after_embed = False self.use_input_layernorm_in_first_layer = True super().__init__(**kwargs)
[docs] def to_dict(self): output = super().to_dict() # Serialize the fields added in LLaMAConfig output['mlp_bias'] = self.mlp_bias output['attn_bias'] = self.attn_bias output['rotary_base'] = self.rotary_base output['rotary_scaling'] = self.rotary_scaling output['residual_mlp'] = self.residual_mlp output[ 'disable_weight_only_quant_plugin'] = self.disable_weight_only_quant_plugin output['fc_after_embed'] = self.fc_after_embed output[ 'use_input_layernorm_in_first_layer'] = self.use_input_layernorm_in_first_layer output['moe'] = self.moe.to_dict() return output
[docs] @classmethod def from_hugging_face( cls, hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers trust_remote_code = kwargs.pop('trust_remote_code', True) if isinstance(hf_config_or_dir, transformers.PretrainedConfig): hf_config = hf_config_or_dir else: hf_config_dir = str(hf_config_or_dir) if "vila" in hf_config_dir: sys.path.append(hf_config_dir + "/../VILA") from llava.model import LlavaLlamaConfig # noqa from llava.model import LlavaLlamaModel transformers.AutoConfig.register("llava_llama", LlavaLlamaConfig) transformers.AutoModelForCausalLM.register( LlavaLlamaConfig, LlavaLlamaModel) hf_config = transformers.AutoConfig.from_pretrained( hf_config_dir, trust_remote_code=trust_remote_code) if hf_config.model_type == "llava": # LLaVA = Vision model + Llama LLM # We load a llava config and use its' text config as llama config from transformers import LlavaConfig hf_config = LlavaConfig.from_pretrained( hf_config_dir).text_config if hf_config.model_type == "llava_next": from transformers import LlavaNextConfig hf_config = LlavaNextConfig.from_pretrained( hf_config_dir).text_config if hf_config.model_type == "llava_llama": hf_config.llm_cfg["architecture"] = hf_config.llm_cfg[ "architectures"][0] hf_config.llm_cfg["dtype"] = hf_config.llm_cfg["torch_dtype"] hf_config = PretrainedConfig.from_dict(hf_config.llm_cfg) num_key_value_heads = getattr(hf_config, "num_key_value_heads", hf_config.num_attention_heads) if hf_config.model_type == "exaone": hidden_act = hf_config.activation_function # NOTE # EXAONE also uses RMS norm but they represent as layer_norm_epsilon. norm_epsilon = getattr(hf_config, "layer_norm_epsilon", 1e-5) else: hidden_act = hf_config.hidden_act norm_epsilon = hf_config.rms_norm_eps head_dim = getattr( hf_config, "head_dim", hf_config.hidden_size // hf_config.num_attention_heads) head_size = getattr(hf_config, "kv_channels", head_dim) attn_bias = getattr(hf_config, 'bias', False) or getattr( hf_config, 'attention_bias', False) rotary_scaling = getattr(hf_config, "rope_scaling", None) rotary_base = getattr(hf_config, "rope_theta", 10000.0) residual_mlp = getattr(hf_config, "parallel_attn_mlp_res", False) disable_weight_only_quant_plugin = kwargs.pop( 'disable_weight_only_quant_plugin', False) remove_duplicated_kv_heads = kwargs.pop('remove_duplicated_kv_heads', False) if hf_config.model_type == "mixtral" or hf_config.model_type == "arctic": # HF LLaMA-type models are implicitly using gated activation. # With our MoE implementation, we must make it explicit hidden_act = "swiglu" moe_normalization_mode = MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE else: moe_normalization_mode = None moe_num_experts = getattr(hf_config, "num_local_experts", 0) moe_top_k = getattr(hf_config, "num_experts_per_tok", 0) moe_config = MoeConfig(num_experts=moe_num_experts, top_k=moe_top_k, normalization_mode=moe_normalization_mode) moe_config.validate() if dtype == 'auto': dtype = getattr(hf_config, 'torch_dtype', None) if dtype is None: dtype = 'float16' if isinstance(dtype, torch.dtype): dtype = torch_dtype_to_str(dtype) if dtype == 'float32': dtype = 'float16' return cls( architecture=hf_config.architectures[0], dtype=dtype, num_hidden_layers=hf_config.num_hidden_layers, num_attention_heads=hf_config.num_attention_heads, hidden_size=hf_config.hidden_size, intermediate_size=hf_config.intermediate_size, num_key_value_heads=num_key_value_heads, head_size=head_size, vocab_size=hf_config.vocab_size, position_embedding_type='rope_gpt_neox', max_position_embeddings=hf_config.max_position_embeddings, hidden_act=hidden_act, norm_epsilon=norm_epsilon, attn_bias=attn_bias, rotary_base=rotary_base, rotary_scaling=rotary_scaling, residual_mlp=residual_mlp, disable_weight_only_quant_plugin=disable_weight_only_quant_plugin, moe=moe_config, mapping=mapping, quantization=quant_config, remove_duplicated_kv_heads=remove_duplicated_kv_heads, **kwargs)
[docs] @classmethod def from_meta_ckpt(cls, meta_ckpt_dir: str, dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): with open(Path(meta_ckpt_dir, "params.json")) as fp: meta_config: dict = json.load(fp) n_embd = meta_config["dim"] n_head = meta_config["n_heads"] n_kv_head = meta_config.get("n_kv_heads", n_head) vocab_size = meta_config.get("vocab_size", 32000) # Reset vocab_size to 32000 for LLama v2 checkpoint. if vocab_size == -1: vocab_size = 32000 if "hidden_dim" in meta_config: inter_size = meta_config["hidden_dim"] else: multiple_of = meta_config.get("multiple_of", 1) n_embd_ = int(4 * n_embd * 2 / 3) ffn_dim_multiplier = meta_config.get("ffn_dim_multiplier", 1) inter_size = multiple_of * ( (int(n_embd_ * ffn_dim_multiplier) + multiple_of - 1) // multiple_of) if dtype == 'auto': dtype = 'bfloat16' if meta_config.get('use_scaled_rope'): rotary_scaling = {"type": "llama3"} else: rotary_scaling = meta_config.get("rope_scaling") # meta checkpoint don't have vocab_size|hidden_act|rotary_base specified, use same default value as HF return cls(architecture="LlamaForCausalLM", dtype=dtype, num_hidden_layers=meta_config["n_layers"], num_attention_heads=n_head, hidden_size=n_embd, intermediate_size=inter_size, num_key_value_heads=n_kv_head, vocab_size=vocab_size, position_embedding_type='rope_gpt_neox', max_position_embeddings=2048, hidden_act='silu', rotary_scaling=rotary_scaling, rotary_base=meta_config.get('rope_theta', 10000), norm_epsilon=meta_config["norm_eps"], mapping=mapping, quantization=quant_config, **kwargs)