# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional, Union
import transformers
from ..._common import default_net
from ..._utils import pad_vocab_size
from ...functional import (AllReduceFusionOp, AllReduceFusionParams, Tensor,
allgather, concat, non_gated_version, recv, send)
from ...layers import (MOE, Attention, AttentionMaskType, ColumnLinear,
Embedding, GatedMLP, PositionEmbeddingType, RmsNorm)
from ...lora_manager import LoraConfig, use_lora
from ...mapping import Mapping
from ...module import Module
from ..convert_utils import has_safetensors
from ..model_weights_loader import ModelWeightsLoader
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
QuantConfig, check_share_embedding)
from .config import LLaMAConfig
from .convert import (load_hf_llama, load_weights_from_gptq,
load_weights_from_hf_by_shard, load_weights_from_hf_model,
load_weights_from_hf_safetensors,
load_weights_from_lmquant, load_weights_from_meta_ckpt)
class LLaMADecoderLayer(Module):
def __init__(self, config: LLaMAConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
layer_idx += config.layer_idx_offset
self.config = config
self.mapping = config.mapping
if (self.config.use_input_layernorm_in_first_layer
and self.layer_idx == 0) or self.layer_idx > 0:
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
self.local_layer_idx = layer_idx - layers_range[0]
self.is_last_local_layer = layer_idx == layers_range[-1]
self.attention = Attention(
local_layer_idx=self.local_layer_idx,
hidden_size=config.hidden_size,
attention_head_size=config.head_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=config.max_position_embeddings,
dtype=config.dtype,
attention_mask_type=AttentionMaskType.causal,
bias=config.attn_bias,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_embedding_base=config.rotary_base,
rotary_embedding_scaling=config.rotary_scaling,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
tp_rank=config.mapping.tp_rank,
quant_mode=config.quant_mode)
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
ClsMLP = GatedMLP
mlp_kwargs = {}
if config.moe.has_moe():
ClsMLP = MOE
mlp_kwargs = {
"moe_config": config.moe,
"mapping": config.mapping,
}
self.mlp = ClsMLP(hidden_size=config.hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=config.hidden_act,
dtype=config.dtype,
bias=config.mlp_bias,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode,
**mlp_kwargs)
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
# Residual MLP that applies on pre-attention input
# TODO: change to self.has_residual_mlp = self.config.residual_mlp after ModelOpt quantize config is updated
self.has_residual_mlp = False
if hasattr(self.config,
"residual_mlp") and self.config.residual_mlp is True:
self.has_residual_mlp = True
if self.has_residual_mlp:
self.residual_layernorm = RmsNorm(
normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
ClsMLP = GatedMLP # TODO: may use FusedGatedMLP to further speedup
self.residual_mlp = ClsMLP(
hidden_size=config.hidden_size,
ffn_hidden_size=config.
hidden_size, # residual mlp uses hidden_size
hidden_act=non_gated_version(
config.hidden_act), # back to non-gated
dtype=config.dtype,
bias=config.mlp_bias,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode)
def forward(self,
hidden_states,
attention_mask=None,
use_cache=False,
spec_decoding_params=None,
kv_cache_params=None,
attention_params=None,
lora_layer_params=None,
next_layer_input_layernorm_args=None):
assert not (
default_net().plugin_config.reduce_fusion and self.has_residual_mlp
), "Custom all reduce and residual mlp can't be enabled at the same time."
if default_net(
).plugin_config.reduce_fusion and self.local_layer_idx > 0:
hidden_states, residual = hidden_states
else:
residual = hidden_states
if (self.config.use_input_layernorm_in_first_layer
and self.layer_idx == 0) or self.layer_idx > 0:
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
spec_decoding_params=spec_decoding_params,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params,
reduce_fusion_params=AllReduceFusionParams(
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM
if default_net().plugin_config.reduce_fusion else
AllReduceFusionOp.NONE,
residual=residual,
norm_weight=self.post_layernorm.weight.value,
eps=self.post_layernorm.eps))
if use_cache:
attention_output, presents = attention_output
if self.has_residual_mlp:
hidden_states = residual + attention_output
residual_attn = hidden_states
# arctic layer w/ residual mlp
# residual mlp
hidden_states = self.residual_layernorm(hidden_states)
hidden_states = self.residual_mlp(hidden_states)
residual_mlp = residual_attn + hidden_states
# parallel moe
# parallel moe layers applies on PRE-ATTENTION input residual, therefore achieving pre-fetching and better parallelism
hidden_states = self.post_layernorm(residual)
hidden_states = self.mlp(hidden_states,
lora_layer_params=lora_layer_params)
hidden_states = residual_mlp + hidden_states
else:
if default_net().plugin_config.reduce_fusion:
hidden_states, residual = attention_output
else:
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
if next_layer_input_layernorm_args is not None:
hidden_states = self.mlp(
hidden_states,
lora_layer_params=lora_layer_params,
reduce_fusion_params=AllReduceFusionParams(
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM
if default_net().plugin_config.reduce_fusion else
AllReduceFusionOp.NONE,
residual=residual,
norm_weight=next_layer_input_layernorm_args[0],
eps=next_layer_input_layernorm_args[1]))
else:
if default_net(
).plugin_config.pp_reduce_scatter and self.is_last_local_layer and not self.mapping.is_last_pp_rank(
):
hidden_states = self.mlp(
hidden_states,
lora_layer_params=lora_layer_params,
last_local_layer_residual=residual)
else:
hidden_states = self.mlp(
hidden_states, lora_layer_params=lora_layer_params)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
[docs]
class LLaMAModel(Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
self.mapping = config.mapping
self.hidden_size = config.hidden_size
if self.mapping.is_first_pp_rank():
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(LLaMADecoderLayer, config)
if config.fc_after_embed:
self.fc = ColumnLinear(2 * config.hidden_size,
config.hidden_size,
bias=True,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
if self.mapping.is_last_pp_rank():
self.ln_f = None
if config.use_last_layernorm:
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
[docs]
def forward(self,
input_ids,
position_ids=None,
use_cache=False,
attention_mask=None,
spec_decoding_params=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
hidden_states_for_embed=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
ptuning_args = [
prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if prompt_embedding_table is not None else []
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
if default_net().plugin_config.pp_reduce_scatter:
hidden_states = allgather(hidden_states,
self.mapping.tp_group,
gather_dim=0)
# reshape to (-1, hidden_size)
hidden_states = hidden_states.view(
concat([-1, self.hidden_size]))
if hidden_states_for_embed is not None:
hidden_states = concat([hidden_states, hidden_states_for_embed],
dim=-1)
hidden_states = self.fc(hidden_states)
hidden_states = self.layers.forward(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params,
spec_decoding_params=spec_decoding_params)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
if self.ln_f:
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
[docs]
class LLaMAForCausalLM(DecoderModelForCausalLM):
config_class = LLaMAConfig
def __init__(self, config: LLaMAConfig):
transformer = LLaMAModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
self.quant_mode = config.quant_mode
self.mapping = config.mapping
super().__init__(config, transformer, lm_head)
[docs]
@classmethod
def from_hugging_face(
cls,
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
''' Create a LLaMAForCausalLM object from give parameters
'''
import transformers
load_by_shard = kwargs.pop('load_by_shard', False)
load_model_on_cpu = kwargs.pop('load_model_on_cpu', False)
quant_ckpt_path = kwargs.pop('quant_ckpt_path', None)
if os.environ.get("TRTLLM_DISABLE_UNIFIED_CONVERTER"
) is not None and not isinstance(
hf_model_or_dir, transformers.PreTrainedModel):
if "vila" in hf_model_or_dir or "llava" in hf_model_or_dir:
hf_model_or_dir = load_hf_llama(hf_model_or_dir,
load_model_on_cpu)
elif not load_by_shard and not has_safetensors(
hf_model_or_dir
) and not quant_config.quant_mode.has_any_quant():
hf_model_or_dir = load_hf_llama(hf_model_or_dir,
load_model_on_cpu)
assert hf_model_or_dir is not None
use_preloading = isinstance(hf_model_or_dir,
transformers.PreTrainedModel)
if use_preloading:
hf_model = hf_model_or_dir
hf_config_or_dir = hf_model.config
else:
hf_model_dir = hf_model_or_dir
hf_config_or_dir = hf_model_or_dir
config = LLaMAConfig.from_hugging_face(hf_config_or_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
if config.remove_duplicated_kv_heads:
config.num_key_value_heads = config.num_key_value_heads // 2
if os.environ.get("TRTLLM_DISABLE_UNIFIED_CONVERTER") is None:
custom_dict = {}
model_name = hf_model.config.model_type if use_preloading else hf_model_or_dir
if "llava" in model_name:
custom_dict = {
"transformer": "language_model.model",
"lm_head": "language_model.lm_head"
}
elif "vila" in model_name:
hf_model_dir += "/llm"
elif "exaone" in model_name:
custom_dict = {
"transformer": "transformer",
"layers": "h",
"vocab_embedding": "wte",
"lm_head": "lm_head",
"ln_f": "ln_f",
"attention": "attn.attention",
"dense": "out_proj",
"gate": "c_fc_1",
"proj": "c_proj",
"fc": "c_fc_0",
"input_layernorm": "ln_1",
"post_layernorm": "ln_2",
}
if quant_ckpt_path is not None:
hf_model_dir = quant_ckpt_path
loader = ModelWeightsLoader(hf_model_dir, custom_dict)
loader.check_share_embedding(config)
model = cls(config)
loader.generate_tllm_weights(model)
else:
if use_preloading:
assert not load_by_shard
weights = load_weights_from_hf_model(hf_model, config)
elif load_by_shard:
weights = load_weights_from_hf_by_shard(hf_model_dir, config)
elif has_safetensors(
hf_model_dir) and not config.quant_mode.has_any_quant():
weights = load_weights_from_hf_safetensors(hf_model_dir, config)
elif quant_ckpt_path is not None:
if quant_config.quant_mode.is_int4_weight_only():
weights = load_weights_from_gptq(quant_ckpt_path, config)
elif quant_config.quant_mode.is_qserve_w4a8():
weights = load_weights_from_lmquant(quant_ckpt_path, config)
else:
raise ValueError(
"quant_ckpt_path should be specified only for GPTQ or QServe"
)
else:
hf_model = load_hf_llama(hf_model_dir, load_model_on_cpu)
weights = load_weights_from_hf_model(hf_model, config)
check_share_embedding(weights, config)
model = cls(config)
model.load(weights)
return model
[docs]
def default_plugin_config(self, **kwargs):
plugin_config = super().default_plugin_config(**kwargs)
if self.quant_mode.is_int4_weight_only_per_group():
plugin_config.weight_only_groupwise_quant_matmul_plugin = 'auto'
return plugin_config
[docs]
@classmethod
def quantize(
cls,
hf_model_dir: str,
output_dir: str,
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
*,
device: str = 'cuda',
calib_dataset: str = 'cnn_dailymail',
calib_batches: int = 512,
calib_batch_size: int = 1,
calib_max_seq_length: int = 512,
random_seed: int = 1234,
tokenizer_max_seq_length: int = 2048,
**kwargs,
):
if quant_config.requires_modelopt_quantization:
# modelopt quantization flow
super().quantize(hf_model_dir,
output_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
device=device,
calib_dataset=calib_dataset,
calib_batches=calib_batches,
calib_batch_size=calib_batch_size,
calib_max_seq_length=calib_max_seq_length,
random_seed=random_seed,
tokenizer_max_seq_length=tokenizer_max_seq_length)
elif quant_config.requires_calibration:
# non-modelopt quantization flow
from . import convert
config = LLaMAConfig.from_hugging_face(hf_model_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
trust_remote_code = kwargs.pop("trust_remote_code", True)
convert.quantize(hf_model_dir,
output_dir,
config=config,
device=device,
calib_dataset=calib_dataset,
trust_remote_code=trust_remote_code,
calib_batches=calib_batches,
calib_max_seq_length=calib_max_seq_length)
else:
raise ValueError(
f"The quant_config ({quant_config}) does not require calibration, try {cls.__name__}.from_hugging_face instead."
)
[docs]
def use_lora(self, lora_config: LoraConfig):
use_lora(self, lora_config)