Source code for tensorrt_llm.models.llama.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional, Union

import transformers

from ..._common import default_net
from ..._utils import pad_vocab_size
from ...functional import (AllReduceFusionOp, AllReduceFusionParams, Tensor,
                           allgather, concat, non_gated_version, recv, send)
from ...layers import (MOE, Attention, AttentionMaskType, ColumnLinear,
                       Embedding, GatedMLP, PositionEmbeddingType, RmsNorm)
from ...lora_manager import LoraConfig, use_lora
from ...mapping import Mapping
from ...module import Module
from ..convert_utils import has_safetensors
from ..model_weights_loader import ModelWeightsLoader
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
                              QuantConfig, check_share_embedding)
from .config import LLaMAConfig
from .convert import (load_hf_llama, load_weights_from_gptq,
                      load_weights_from_hf_by_shard, load_weights_from_hf_model,
                      load_weights_from_hf_safetensors,
                      load_weights_from_lmquant, load_weights_from_meta_ckpt)


class LLaMADecoderLayer(Module):

    def __init__(self, config: LLaMAConfig, layer_idx: int):
        super().__init__()
        self.layer_idx = layer_idx
        layer_idx += config.layer_idx_offset
        self.config = config
        self.mapping = config.mapping

        if (self.config.use_input_layernorm_in_first_layer
                and self.layer_idx == 0) or self.layer_idx > 0:
            self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
                                           eps=config.norm_epsilon,
                                           dtype=config.dtype)

        layers_range = config.mapping.pp_layers(config.num_hidden_layers)
        self.local_layer_idx = layer_idx - layers_range[0]
        self.is_last_local_layer = layer_idx == layers_range[-1]
        self.attention = Attention(
            local_layer_idx=self.local_layer_idx,
            hidden_size=config.hidden_size,
            attention_head_size=config.head_size,
            num_attention_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            max_position_embeddings=config.max_position_embeddings,
            dtype=config.dtype,
            attention_mask_type=AttentionMaskType.causal,
            bias=config.attn_bias,
            position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
            rotary_embedding_base=config.rotary_base,
            rotary_embedding_scaling=config.rotary_scaling,
            tp_group=config.mapping.tp_group,
            tp_size=config.mapping.tp_size,
            tp_rank=config.mapping.tp_rank,
            quant_mode=config.quant_mode)

        mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size

        ClsMLP = GatedMLP
        mlp_kwargs = {}
        if config.moe.has_moe():
            ClsMLP = MOE
            mlp_kwargs = {
                "moe_config": config.moe,
                "mapping": config.mapping,
            }
        self.mlp = ClsMLP(hidden_size=config.hidden_size,
                          ffn_hidden_size=mlp_hidden_size,
                          hidden_act=config.hidden_act,
                          dtype=config.dtype,
                          bias=config.mlp_bias,
                          tp_group=config.mapping.tp_group,
                          tp_size=config.mapping.tp_size,
                          quant_mode=config.quant_mode,
                          **mlp_kwargs)

        self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
                                      eps=config.norm_epsilon,
                                      dtype=config.dtype)

        # Residual MLP that applies on pre-attention input
        # TODO: change to self.has_residual_mlp = self.config.residual_mlp after ModelOpt quantize config is updated
        self.has_residual_mlp = False
        if hasattr(self.config,
                   "residual_mlp") and self.config.residual_mlp is True:
            self.has_residual_mlp = True

        if self.has_residual_mlp:
            self.residual_layernorm = RmsNorm(
                normalized_shape=config.hidden_size,
                eps=config.norm_epsilon,
                dtype=config.dtype)
            ClsMLP = GatedMLP  # TODO: may use FusedGatedMLP to further speedup
            self.residual_mlp = ClsMLP(
                hidden_size=config.hidden_size,
                ffn_hidden_size=config.
                hidden_size,  # residual mlp uses hidden_size
                hidden_act=non_gated_version(
                    config.hidden_act),  # back to non-gated
                dtype=config.dtype,
                bias=config.mlp_bias,
                tp_group=config.mapping.tp_group,
                tp_size=config.mapping.tp_size,
                quant_mode=config.quant_mode)

    def forward(self,
                hidden_states,
                attention_mask=None,
                use_cache=False,
                spec_decoding_params=None,
                kv_cache_params=None,
                attention_params=None,
                lora_layer_params=None,
                next_layer_input_layernorm_args=None):
        assert not (
            default_net().plugin_config.reduce_fusion and self.has_residual_mlp
        ), "Custom all reduce and residual mlp can't be enabled at the same time."
        if default_net(
        ).plugin_config.reduce_fusion and self.local_layer_idx > 0:
            hidden_states, residual = hidden_states
        else:
            residual = hidden_states
            if (self.config.use_input_layernorm_in_first_layer
                    and self.layer_idx == 0) or self.layer_idx > 0:
                hidden_states = self.input_layernorm(hidden_states)

        attention_output = self.attention(
            hidden_states,
            attention_mask=attention_mask,
            use_cache=use_cache,
            spec_decoding_params=spec_decoding_params,
            kv_cache_params=kv_cache_params,
            attention_params=attention_params,
            lora_layer_params=lora_layer_params,
            reduce_fusion_params=AllReduceFusionParams(
                fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM
                if default_net().plugin_config.reduce_fusion else
                AllReduceFusionOp.NONE,
                residual=residual,
                norm_weight=self.post_layernorm.weight.value,
                eps=self.post_layernorm.eps))

        if use_cache:
            attention_output, presents = attention_output

        if self.has_residual_mlp:
            hidden_states = residual + attention_output
            residual_attn = hidden_states
            # arctic layer w/ residual mlp

            # residual mlp
            hidden_states = self.residual_layernorm(hidden_states)
            hidden_states = self.residual_mlp(hidden_states)
            residual_mlp = residual_attn + hidden_states

            # parallel moe
            # parallel moe layers applies on PRE-ATTENTION input residual, therefore achieving pre-fetching and better parallelism
            hidden_states = self.post_layernorm(residual)
            hidden_states = self.mlp(hidden_states,
                                     lora_layer_params=lora_layer_params)
            hidden_states = residual_mlp + hidden_states
        else:
            if default_net().plugin_config.reduce_fusion:
                hidden_states, residual = attention_output
            else:
                hidden_states = residual + attention_output
                residual = hidden_states
                hidden_states = self.post_layernorm(hidden_states)
            if next_layer_input_layernorm_args is not None:
                hidden_states = self.mlp(
                    hidden_states,
                    lora_layer_params=lora_layer_params,
                    reduce_fusion_params=AllReduceFusionParams(
                        fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM
                        if default_net().plugin_config.reduce_fusion else
                        AllReduceFusionOp.NONE,
                        residual=residual,
                        norm_weight=next_layer_input_layernorm_args[0],
                        eps=next_layer_input_layernorm_args[1]))
            else:
                if default_net(
                ).plugin_config.pp_reduce_scatter and self.is_last_local_layer and not self.mapping.is_last_pp_rank(
                ):
                    hidden_states = self.mlp(
                        hidden_states,
                        lora_layer_params=lora_layer_params,
                        last_local_layer_residual=residual)
                else:
                    hidden_states = self.mlp(
                        hidden_states, lora_layer_params=lora_layer_params)
                    hidden_states = residual + hidden_states

        if use_cache:
            return (hidden_states, presents)
        return hidden_states


[docs] class LLaMAModel(Module): def __init__(self, config: LLaMAConfig) -> None: super().__init__() self.mapping = config.mapping self.hidden_size = config.hidden_size if self.mapping.is_first_pp_rank(): self.vocab_embedding = Embedding(config.vocab_size, config.hidden_size, dtype=config.dtype) self.layers = DecoderLayerList(LLaMADecoderLayer, config) if config.fc_after_embed: self.fc = ColumnLinear(2 * config.hidden_size, config.hidden_size, bias=True, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) if self.mapping.is_last_pp_rank(): self.ln_f = None if config.use_last_layernorm: self.ln_f = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype)
[docs] def forward(self, input_ids, position_ids=None, use_cache=False, attention_mask=None, spec_decoding_params=None, kv_cache_params=None, attention_params=None, hidden_states=None, hidden_states_for_embed=None, prompt_embedding_table: Optional[Tensor] = None, prompt_tasks: Optional[Tensor] = None, prompt_vocab_size: Optional[Tensor] = None, lora_params=None): ptuning_args = [ prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if prompt_embedding_table is not None else [] if self.mapping.is_first_pp_rank(): hidden_states = self.vocab_embedding(input_ids, *ptuning_args) else: hidden_states = recv(hidden_states, self.mapping.prev_pp_rank()) if default_net().plugin_config.pp_reduce_scatter: hidden_states = allgather(hidden_states, self.mapping.tp_group, gather_dim=0) # reshape to (-1, hidden_size) hidden_states = hidden_states.view( concat([-1, self.hidden_size])) if hidden_states_for_embed is not None: hidden_states = concat([hidden_states, hidden_states_for_embed], dim=-1) hidden_states = self.fc(hidden_states) hidden_states = self.layers.forward( hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params, lora_params=lora_params, spec_decoding_params=spec_decoding_params) if use_cache: hidden_states, presents = hidden_states if self.mapping.is_last_pp_rank(): if self.ln_f: hidden_states = self.ln_f(hidden_states) else: hidden_states = send(hidden_states, self.mapping.next_pp_rank()) if use_cache: return (hidden_states, tuple(presents)) return hidden_states
[docs] class LLaMAForCausalLM(DecoderModelForCausalLM): config_class = LLaMAConfig def __init__(self, config: LLaMAConfig): transformer = LLaMAModel(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) if config.mapping.is_last_pp_rank(): lm_head = ColumnLinear(config.hidden_size, vocab_size_padded, bias=False, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) else: lm_head = None self.quant_mode = config.quant_mode self.mapping = config.mapping super().__init__(config, transformer, lm_head)
[docs] @classmethod def from_hugging_face( cls, hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): ''' Create a LLaMAForCausalLM object from give parameters ''' import transformers load_by_shard = kwargs.pop('load_by_shard', False) load_model_on_cpu = kwargs.pop('load_model_on_cpu', False) quant_ckpt_path = kwargs.pop('quant_ckpt_path', None) if os.environ.get("TRTLLM_DISABLE_UNIFIED_CONVERTER" ) is not None and not isinstance( hf_model_or_dir, transformers.PreTrainedModel): if "vila" in hf_model_or_dir or "llava" in hf_model_or_dir: hf_model_or_dir = load_hf_llama(hf_model_or_dir, load_model_on_cpu) elif not load_by_shard and not has_safetensors( hf_model_or_dir ) and not quant_config.quant_mode.has_any_quant(): hf_model_or_dir = load_hf_llama(hf_model_or_dir, load_model_on_cpu) assert hf_model_or_dir is not None use_preloading = isinstance(hf_model_or_dir, transformers.PreTrainedModel) if use_preloading: hf_model = hf_model_or_dir hf_config_or_dir = hf_model.config else: hf_model_dir = hf_model_or_dir hf_config_or_dir = hf_model_or_dir config = LLaMAConfig.from_hugging_face(hf_config_or_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, **kwargs) if config.remove_duplicated_kv_heads: config.num_key_value_heads = config.num_key_value_heads // 2 if os.environ.get("TRTLLM_DISABLE_UNIFIED_CONVERTER") is None: custom_dict = {} model_name = hf_model.config.model_type if use_preloading else hf_model_or_dir if "llava" in model_name: custom_dict = { "transformer": "language_model.model", "lm_head": "language_model.lm_head" } elif "vila" in model_name: hf_model_dir += "/llm" elif "exaone" in model_name: custom_dict = { "transformer": "transformer", "layers": "h", "vocab_embedding": "wte", "lm_head": "lm_head", "ln_f": "ln_f", "attention": "attn.attention", "dense": "out_proj", "gate": "c_fc_1", "proj": "c_proj", "fc": "c_fc_0", "input_layernorm": "ln_1", "post_layernorm": "ln_2", } if quant_ckpt_path is not None: hf_model_dir = quant_ckpt_path loader = ModelWeightsLoader(hf_model_dir, custom_dict) loader.check_share_embedding(config) model = cls(config) loader.generate_tllm_weights(model) else: if use_preloading: assert not load_by_shard weights = load_weights_from_hf_model(hf_model, config) elif load_by_shard: weights = load_weights_from_hf_by_shard(hf_model_dir, config) elif has_safetensors( hf_model_dir) and not config.quant_mode.has_any_quant(): weights = load_weights_from_hf_safetensors(hf_model_dir, config) elif quant_ckpt_path is not None: if quant_config.quant_mode.is_int4_weight_only(): weights = load_weights_from_gptq(quant_ckpt_path, config) elif quant_config.quant_mode.is_qserve_w4a8(): weights = load_weights_from_lmquant(quant_ckpt_path, config) else: raise ValueError( "quant_ckpt_path should be specified only for GPTQ or QServe" ) else: hf_model = load_hf_llama(hf_model_dir, load_model_on_cpu) weights = load_weights_from_hf_model(hf_model, config) check_share_embedding(weights, config) model = cls(config) model.load(weights) return model
[docs] def default_plugin_config(self, **kwargs): plugin_config = super().default_plugin_config(**kwargs) if self.quant_mode.is_int4_weight_only_per_group(): plugin_config.weight_only_groupwise_quant_matmul_plugin = 'auto' return plugin_config
[docs] @classmethod def from_meta_ckpt(cls, meta_ckpt_dir: str, dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): config = LLaMAConfig.from_meta_ckpt(meta_ckpt_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, **kwargs) weights = load_weights_from_meta_ckpt(meta_ckpt_dir, config) check_share_embedding(weights, config) model = cls(config) model.load(weights) return model
[docs] @classmethod def quantize( cls, hf_model_dir: str, output_dir: str, dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, *, device: str = 'cuda', calib_dataset: str = 'cnn_dailymail', calib_batches: int = 512, calib_batch_size: int = 1, calib_max_seq_length: int = 512, random_seed: int = 1234, tokenizer_max_seq_length: int = 2048, **kwargs, ): if quant_config.requires_modelopt_quantization: # modelopt quantization flow super().quantize(hf_model_dir, output_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, device=device, calib_dataset=calib_dataset, calib_batches=calib_batches, calib_batch_size=calib_batch_size, calib_max_seq_length=calib_max_seq_length, random_seed=random_seed, tokenizer_max_seq_length=tokenizer_max_seq_length) elif quant_config.requires_calibration: # non-modelopt quantization flow from . import convert config = LLaMAConfig.from_hugging_face(hf_model_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, **kwargs) trust_remote_code = kwargs.pop("trust_remote_code", True) convert.quantize(hf_model_dir, output_dir, config=config, device=device, calib_dataset=calib_dataset, trust_remote_code=trust_remote_code, calib_batches=calib_batches, calib_max_seq_length=calib_max_seq_length) else: raise ValueError( f"The quant_config ({quant_config}) does not require calibration, try {cls.__name__}.from_hugging_face instead." )
[docs] def use_lora(self, lora_config: LoraConfig): use_lora(self, lora_config)