Source code for tensorrt_llm.models.medusa.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
from typing import Optional, Union

from transformers import AutoModelForCausalLM

from tensorrt_llm.models.llama.model import LLaMAForCausalLM
from tensorrt_llm.models.medusa.weight import load_medusa_hf
from tensorrt_llm.models.qwen.model import QWenForCausalLM

from ..._common import default_net
from ..._utils import pad_vocab_size
from ...functional import ACT2FN, stack
from ...layers import ColumnLinear
from ...mapping import Mapping
from ...module import Module, ModuleList
from ..modeling_utils import PretrainedModel, QuantConfig
from .config import MedusaConfig
from .weight import convert_hf_llama


class MedusaLayer(Module):

    def __init__(
            self,
            hidden_size,
            hidden_act="silu",
            dtype=None,
            mapping=Mapping(),
    ):
        super().__init__()
        self.linear = ColumnLinear(hidden_size,
                                   hidden_size,
                                   dtype=dtype,
                                   tp_group=mapping.tp_group,
                                   tp_size=mapping.tp_size,
                                   gather_output=True)
        self.hidden_act = hidden_act

    def forward(self, x):
        return x + ACT2FN[self.hidden_act](self.linear(x))


class MedusaHead(Module):

    def __init__(
            self,
            num_layers,
            hidden_size,
            vocab_size,
            hidden_act="silu",
            dtype=None,
            mapping=Mapping(),
    ):
        super().__init__()
        self.medusa_layers = ModuleList([
            MedusaLayer(hidden_size=hidden_size,
                        hidden_act=hidden_act,
                        dtype=dtype,
                        mapping=mapping) for _ in range(num_layers)
        ])
        self.lm_head = ColumnLinear(hidden_size,
                                    vocab_size,
                                    bias=False,
                                    dtype=dtype,
                                    tp_group=mapping.tp_group,
                                    tp_size=mapping.tp_size,
                                    gather_output=True)
        return

    def forward(self, x):
        hidden_states = x
        for layer in self.medusa_layers:
            hidden_states = layer(hidden_states)
        return self.lm_head(hidden_states)


# MedusaForCausalLm is a thin wrapper that picks parent class for GenericMedusaForCausalLM.
# All medusa functionality is defined in GenericMedusaForCausalLM.
[docs] class MedusaForCausalLm(PretrainedModel): config_class = MedusaConfig def __init__(self, config: MedusaConfig): super().__init__(config) BaseLM = QWenForCausalLM if hasattr( config, "model_type") and "qwen" in config.model_type else LLaMAForCausalLM class GenericMedusaForCausalLM(BaseLM): def __init__(self, config: MedusaConfig): super().__init__(config) self.num_medusa_heads = config.num_medusa_heads self.num_medusa_layers = config.num_medusa_layers self.hidden_size = config.hidden_size self.vocab_size = config.vocab_size vocab_size_padded = pad_vocab_size(self.vocab_size, config.mapping.tp_size) self.medusa_heads = ModuleList([ MedusaHead(num_layers=self.num_medusa_layers, hidden_size=config.hidden_size, vocab_size=vocab_size_padded, hidden_act=config.hidden_act, dtype=config.dtype, mapping=config.mapping) for _ in range(self.num_medusa_heads) ]) self.max_medusa_token_len = config.max_draft_len def forward(self, *args, **kwargs): output_original = True hidden_states = super().forward(*args, **kwargs) if kwargs['use_cache']: if default_net().plugin_config.paged_kv_cache: lm_logits, hidden_states, _ = hidden_states else: lm_logits, presents, hidden_states = hidden_states if self.mapping.is_last_pp_rank(): medusa_logits = [] for i in range(self.num_medusa_heads): medusa_logits.append( self.medusa_heads[i](hidden_states)) # [num_medusa_heads, batch_size, num_medusa_tokens + 1, padded_vocab_size]. # Remove padding [num_medusa_heads, batch_size * num_medusa_tokens + 1, padded_vocab_size]. medusa_logits = stack(medusa_logits, dim=0) medusa_logits.mark_output('medusa_logits', self.config.logits_dtype) else: hidden_states.mark_output('hidden_states_output', self.config.dtype) if kwargs['use_cache'] and default_net( ).plugin_config.paged_kv_cache == False: if self.mapping.is_last_pp_rank(): if output_original: return (medusa_logits, lm_logits, presents) return (medusa_logits, presents) return (hidden_states, presents) else: if self.mapping.is_last_pp_rank(): if output_original: return medusa_logits, lm_logits return medusa_logits return hidden_states def prepare_inputs(self, *args, **kwargs): kwargs['speculative_decoding_draft_tokens_external'] = False kwargs['max_draft_len'] = self.max_medusa_token_len return super().prepare_inputs(*args, **kwargs) self.model = GenericMedusaForCausalLM(config) # Specialization to redirect accesses to self.model def __getattribute__(self, name): if name == 'model' or '__' in name: return object.__getattribute__(self, name) else: model = object.__getattribute__(self, 'model') return model.__getattribute__(name) # Override specialized __setattr__ defined in Module def __setattr__(self, name, value) -> None: object.__setattr__(self, name, value)
[docs] @classmethod def from_hugging_face( cls, hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers assert hf_model_or_dir is not None speculative_model_dir = kwargs.pop('speculative_model', None) use_preloading = isinstance(hf_model_or_dir, transformers.PreTrainedModel) if use_preloading: hf_model = hf_model_or_dir hf_config_or_dir = hf_model.config else: hf_model_dir = hf_model_or_dir hf_config_or_dir = hf_model_or_dir config = MedusaConfig.from_hugging_face( hf_config_or_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, speculative_model=speculative_model_dir, **kwargs) if not use_preloading: trust_remote_code = kwargs.pop('trust_remote_code', True) hf_model = AutoModelForCausalLM.from_pretrained( hf_model_dir, torch_dtype="auto", trust_remote_code=trust_remote_code) assert isinstance(hf_model, transformers.PreTrainedModel) weights = convert_hf_llama(hf_model, config.mapping, dtype='float16') model = cls(config) config_file = speculative_model_dir / "config.json" with open(config_file) as fp: model_config = json.load(fp) num_medusa_heads = kwargs[ 'medusa_num_heads'] if 'medusa_num_heads' in kwargs else model_config.get( 'medusa_num_heads', None) num_medusa_layers = model_config.get('medusa_num_layers', None) medusa_weights = load_medusa_hf(medusa_path=speculative_model_dir, num_medusa_heads=num_medusa_heads, num_medusa_layers=num_medusa_layers, mapping=mapping, dtype="float16") weights.update(medusa_weights) model.load(weights) return model