Source code for tensorrt_llm.models.mpt.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ..._utils import pad_vocab_size
from ...functional import PositionEmbeddingType, Tensor
from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear,
                       Embedding, LayerNorm)
from ...module import Module
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
                              PretrainedConfig)


class MPTDecoderLayer(Module):

    def __init__(self, config: PretrainedConfig, layer_idx: int):
        super().__init__()
        self.layer_idx = layer_idx
        self.config = config

        hidden_size = config.hidden_size
        dtype = config.dtype
        tp_size = config.mapping.tp_size
        tp_rank = config.mapping.tp_rank
        tp_group = config.mapping.tp_group
        layernorm_epsilon = config.norm_epsilon

        self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
                                         eps=layernorm_epsilon,
                                         bias=False,
                                         dtype=dtype)

        layers_range = config.mapping.pp_layers(config.num_hidden_layers)
        local_layer_idx = layer_idx - layers_range[0]
        self.attention = Attention(
            local_layer_idx=local_layer_idx,
            hidden_size=hidden_size,
            num_attention_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            attention_mask_type=AttentionMaskType.causal,
            dtype=dtype,
            tp_group=tp_group,
            tp_size=tp_size,
            tp_rank=tp_rank,
            bias=config.bias,
            position_embedding_type=PositionEmbeddingType.alibi,
            quant_mode=config.quant_mode,
            clip_qkv=config.clip_qkv,
            alibi_bias_max=config.alibi_bias_max)

        self.mlp = MLP(hidden_size=hidden_size,
                       ffn_hidden_size=hidden_size * 4,
                       hidden_act=config.hidden_act,
                       dtype=dtype,
                       bias=config.bias,
                       tp_group=tp_group,
                       tp_size=tp_size,
                       quant_mode=config.quant_mode)

        self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
                                        eps=layernorm_epsilon,
                                        bias=False,
                                        dtype=dtype)

    def forward(self,
                hidden_states: Tensor,
                attention_mask=None,
                use_cache=False,
                kv_cache_params=None,
                attention_params=None):

        assert isinstance(hidden_states, Tensor)

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        attention_output = self.attention(hidden_states,
                                          attention_mask=attention_mask,
                                          use_cache=use_cache,
                                          kv_cache_params=kv_cache_params,
                                          attention_params=attention_params)

        if use_cache:
            attention_output, presents = attention_output

        hidden_states = residual + attention_output

        residual = hidden_states
        hidden_states = self.post_layernorm(hidden_states)

        hidden_states = self.mlp(hidden_states)

        hidden_states = residual + hidden_states

        if use_cache:
            return (hidden_states, presents)
        return hidden_states


[docs] class MPTModel(Module): def __init__(self, config: PretrainedConfig): super().__init__() self.config = config if config.mapping.is_first_pp_rank(): self.vocab_embedding = Embedding(config.vocab_size, config.hidden_size, dtype=config.dtype) self.layers = DecoderLayerList(MPTDecoderLayer, config) if config.mapping.is_last_pp_rank(): self.ln_f = LayerNorm(normalized_shape=config.hidden_size, bias=False, dtype=config.dtype)
[docs] def forward(self, input_ids, position_ids, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None): hidden_states = self.vocab_embedding(input_ids) hidden_states = self.layers(hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params) if use_cache: hidden_states, presents = hidden_states hidden_states = self.ln_f(hidden_states) if use_cache: return (hidden_states, tuple(presents)) return hidden_states
[docs] class MPTForCausalLM(DecoderModelForCausalLM): def __init__(self, config: PretrainedConfig): self.check_config(config) transformer = MPTModel(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) if config.mapping.is_last_pp_rank(): lm_head = ColumnLinear(config.hidden_size, vocab_size_padded, bias=config.bias, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) else: lm_head = None super().__init__(config, transformer, lm_head)
[docs] def check_config(self, config): config.set_if_not_exist('bias', False) config.set_if_not_exist('clip_qkv', None) config.set_if_not_exist('alibi_bias_max', 8)