Source code for tensorrt_llm.models.multimodal_encoders.config

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union

import torch

from ..._utils import torch_dtype_to_str
from ...logger import logger
from ...mapping import Mapping
from ..modeling_utils import PretrainedConfig, QuantConfig


[docs] class LlavaNextVisionConfig(PretrainedConfig): def __init__(self, *, image_size: int, patch_size: int, text_hidden_size: int, projector_hidden_act: str = 'gelu', num_channels: int = 3, vision_model_type: str = 'clip_vision_model', **kwargs): self.image_size = image_size self.patch_size = patch_size self.text_hidden_size = text_hidden_size self.num_channels = num_channels self.projector_hidden_act = projector_hidden_act self.vision_model_type = vision_model_type super().__init__(**kwargs)
[docs] @classmethod def from_hugging_face( cls, hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers if isinstance(hf_config_or_dir, transformers.PretrainedConfig): hf_config = hf_config_or_dir else: hf_config_dir = str(hf_config_or_dir) hf_config = transformers.AutoConfig.from_pretrained( hf_config_dir, trust_remote_code=True) if hf_config.model_type == "llava_next": from transformers import LlavaNextConfig hf_config = LlavaNextConfig.from_pretrained(hf_config_dir) else: logger.error("Provided model type is not llava_next.") text_hidden_size = hf_config.text_config.hidden_size # Extract only the vision config llava_next_vision_config = hf_config.vision_config # llava-next uses the second last layer as vision output num_feature_layers = llava_next_vision_config.num_hidden_layers + hf_config.vision_feature_layer + 1 vision_model_type = getattr(llava_next_vision_config, "vision_model_type", "clip_vision_model") num_key_value_heads = getattr( llava_next_vision_config, "num_key_value_heads", llava_next_vision_config.num_attention_heads) # Default configs from HF hidden_act = 'quick_gelu' norm_epsilon = 1e-5 head_size = llava_next_vision_config.hidden_size // llava_next_vision_config.num_attention_heads if dtype == 'auto': dtype = getattr(hf_config, 'torch_dtype', None) if dtype is None: dtype = 'float16' if isinstance(dtype, torch.dtype): dtype = torch_dtype_to_str(dtype) if dtype == 'float32': dtype = 'float16' return cls( image_size=llava_next_vision_config.image_size, patch_size=llava_next_vision_config.patch_size, text_hidden_size=text_hidden_size, projector_hidden_act=hf_config.projector_hidden_act, vision_model_type=vision_model_type, architecture=hf_config.architectures[0], dtype=dtype, num_hidden_layers=num_feature_layers, num_attention_heads=llava_next_vision_config.num_attention_heads, hidden_size=llava_next_vision_config.hidden_size, intermediate_size=llava_next_vision_config.intermediate_size, num_key_value_heads=num_key_value_heads, head_size=head_size, vocab_size=llava_next_vision_config.vocab_size, hidden_act=hidden_act, norm_epsilon=norm_epsilon, mapping=mapping, quantization=quant_config, **kwargs)