Source code for tensorrt_llm.models.phi.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union

from transformers import AutoModelForCausalLM

from ..._utils import pad_vocab_size
from ...functional import Tensor
from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear,
                       Embedding, LayerNorm)
from ...mapping import Mapping
from ...module import Module
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
                              PretrainedConfig, QuantConfig)
from .config import PhiConfig
from .convert import load_weights_from_hf_model


class PhiDecoderLayer(Module):

    def __init__(self, config: PretrainedConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        tp_group = config.mapping.tp_group
        tp_size = config.mapping.tp_size

        self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size,
                                         dtype=config.dtype)

        layers_range = config.mapping.pp_layers(config.num_hidden_layers)
        local_layer_idx = layer_idx - layers_range[0]
        self.attention = Attention(
            local_layer_idx=local_layer_idx,
            hidden_size=config.hidden_size,
            num_attention_heads=config.num_attention_heads,
            rotary_embedding_percentage=config.rotary_pct,
            position_embedding_type=config.position_embedding_type,
            rotary_embedding_base=config.rotary_base,
            max_position_embeddings=config.max_position_embeddings,
            dtype=config.dtype,
            attention_mask_type=AttentionMaskType.causal,
            bias=True,
            tp_group=tp_group,
            tp_size=tp_size,
            quant_mode=config.quant_mode)

        self.mlp = MLP(hidden_size=config.hidden_size,
                       ffn_hidden_size=config.intermediate_size,
                       hidden_act=config.hidden_act,
                       dtype=config.dtype,
                       tp_group=tp_group,
                       tp_size=tp_size,
                       quant_mode=config.quant_mode)

    def forward(
        self,
        hidden_states: Tensor,
        attention_mask=None,
        use_cache=False,
        kv_cache_params=None,
        attention_params=None,
    ):
        residual = hidden_states

        input_layernorm_output = self.input_layernorm(hidden_states)

        attention_output = self.attention(
            input_layernorm_output,
            attention_mask=attention_mask,
            use_cache=use_cache,
            kv_cache_params=kv_cache_params,
            attention_params=attention_params,
            norm_before_bmm1=True,
        )

        if use_cache:
            attention_output, presents = attention_output

        feed_forward_hidden_states = self.mlp(input_layernorm_output, )
        hidden_states = attention_output + feed_forward_hidden_states + residual
        if use_cache:
            return (hidden_states, presents)
        return hidden_states


[docs] class PhiModel(Module): def __init__(self, config: PretrainedConfig): super().__init__() self.vocab_embedding = Embedding(num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, dtype=config.dtype) self.layers = DecoderLayerList(PhiDecoderLayer, config) self.ln_f = LayerNorm(normalized_shape=config.hidden_size, dtype=config.dtype)
[docs] def forward( self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, prompt_embedding_table=None, prompt_tasks=None, prompt_vocab_size=None, ): args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if prompt_embedding_table is not None else [] hidden_states = self.vocab_embedding(input_ids, *args) hidden_states = self.layers( hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params, ) if use_cache: hidden_states, presents = hidden_states hidden_states = self.ln_f(hidden_states) if use_cache: return (hidden_states, tuple(presents)) return hidden_states
[docs] class PhiForCausalLM(DecoderModelForCausalLM): config_class = PhiConfig config_class = PhiConfig def __init__(self, config: PretrainedConfig): self.check_config(config) transformer = PhiModel(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) lm_head = ColumnLinear(config.hidden_size, vocab_size_padded, bias=True, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) super().__init__(config, transformer, lm_head)
[docs] def check_config(self, config): config.set_if_not_exist('partial_rotary_factor', 0.4) config.set_if_not_exist('rotary_base', 10000.0)
[docs] @classmethod def from_hugging_face( cls, hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers assert hf_model_or_dir is not None use_preloading = isinstance(hf_model_or_dir, transformers.PreTrainedModel) if use_preloading: hf_model = hf_model_or_dir hf_config_or_dir = hf_model.config else: hf_model_dir = hf_model_or_dir hf_config_or_dir = hf_model_or_dir config = PhiConfig.from_hugging_face(hf_config_or_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, **kwargs) if not use_preloading: trust_remote_code = kwargs.pop('trust_remote_code', True) hf_model = AutoModelForCausalLM.from_pretrained( hf_model_dir, torch_dtype="auto", trust_remote_code=trust_remote_code) assert isinstance(hf_model, transformers.PreTrainedModel) weights = load_weights_from_hf_model(hf_model, config) model = cls(config) model.load(weights) return model