Source code for tensorrt_llm.models.redrafter.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict

import tensorrt as trt

from tensorrt_llm._common import default_net
from tensorrt_llm.bindings import KVCacheType
from tensorrt_llm.functional import Tensor, cast, categorical_sample
from tensorrt_llm.models import LLaMAForCausalLM
from tensorrt_llm.models.generation_mixin import GenerationMixin

from ..._utils import pad_vocab_size, str_dtype_to_trt
from .drafter import Drafter
from .redrafter_helper import (_beam_search_candidates, _beams2tree,
                               _process_logits_and_hidden_states)


[docs] class ReDrafterForCausalLM(LLaMAForCausalLM): def __init__(self, config): super().__init__(config) self.dtype = str_dtype_to_trt(config.dtype) self.vocab_size = config.vocab_size vocab_size_padded = pad_vocab_size(self.vocab_size, config.mapping.tp_size) self.drafter = Drafter.from_config(config, vocab_size_padded) self.num_beams = config.redrafter_num_beams self.beam_candidate_length = config.redrafter_draft_len_per_beam self.beam_length = self.beam_candidate_length + 1 # including true token self.greedy_search = config.redrafter_greedy_search self.is_rnn = config.redrafter_is_rnn assert self.dtype == self.drafter.dtype, f"{self.dtype} != {self.drafter.dtype}" def _fwd_helper(self, hidden_states, lm_logits, embedding, drafter, kwargs: dict): ''' Must enable remove_input_padding: hidden_states [total_tokens, H] lm_logits [total_tokens, V] 1. process_logits: context vs gen a. Context: just return the last hidden states, and logits/probs b. Gen: i. verify: use lm_logits, draft_probs, draft_indices, draft_tokens ii. select hidden state and update probs 3. Sample token based on probs 4. Generate candidates using hidden_states, sampled token 5. Using beams, generate validation buffers, mark them as output 6. Mark all the outputs ''' num_beams = self.num_beams beam_length = self.beam_length # Get the inputs needed rand_data_sample = kwargs['rand_data_sample'] position_ids_base = kwargs['position_ids_base'] # Step 1: Process logits and hidden states # process the base model output (verify for gen-phase) probs, draft_input, num_accepted_tokens, \ accepted_beam_index = _process_logits_and_hidden_states( self, lm_logits, hidden_states, kwargs) # NOTE: num_accepted_tokens doesn't include true token so add 1 here num_accepted_tokens = num_accepted_tokens + 1 # At this point: # probs : [bs, V] # hidden_states : [bs, H] # Step 2: Sample token next_token = categorical_sample(probs, rand_data_sample) # Step 3: beam search new_draft_tokens, new_draft_logits = _beam_search_candidates( draft_input, next_token, embedding, drafter, self.num_beams, self.beam_length, self.is_rnn) # Step 4: tree processing active_tokens_flattened, new_draft_token_indices, new_mask, \ new_position_offsets, packed_position_ids, next_num_gen_tokens, max_gen_token, \ total_gen_token = _beams2tree(new_draft_tokens, num_beams, beam_length, position_ids_base + num_accepted_tokens) # Step 5: mark all the tensors we need num_accepted_tokens.mark_output('num_accepted_tokens') accepted_beam_index.mark_output('accepted_beam_index') max_gen_token.mark_output('max_gen_token') total_gen_token.mark_output('total_gen_token') next_num_gen_tokens.mark_output('next_spec_decoding_generation_lengths') active_tokens_flattened.mark_output('next_flat_tokens') new_draft_tokens.mark_output('next_draft_tokens') new_draft_logits.mark_output('next_draft_probs') new_draft_token_indices.mark_output('next_draft_indices') new_mask.mark_output('spec_decoding_mask') new_position_offsets.mark_output('next_spec_decoding_position_offsets') packed_position_ids.mark_output('packed_position_ids') return next_token, probs, draft_input
[docs] def forward(self, *args, **kwargs): """ 0. run base model, get logits, hidden_states """ extra_args = [ 'draft_tokens', 'draft_indices', 'draft_probs', 'device_request_types', 'redrafter_inverted_temperature', 'rand_data_validation', 'rand_data_sample', 'position_ids_base', ] use_cache = True base_kwargs = {k: v for k, v in kwargs.items() if k not in extra_args} if use_cache and default_net().plugin_config.paged_kv_cache is False: lm_logits, presents, hidden_states = super().forward( *args, **base_kwargs) else: lm_logits, hidden_states = super().forward(*args, **base_kwargs) # lm_logits could be in fp32 lm_logits_cast = cast(lm_logits, self.dtype) # no-op if same type self.register_network_output("hidden_states", hidden_states) # debugging new_draft_tokens, new_draft_logits, probs = self._fwd_helper( hidden_states, lm_logits_cast, self.transformer.vocab_embedding, self.drafter, kwargs=kwargs) return new_draft_tokens, new_draft_logits, probs
[docs] def prepare_inputs(self, *args, **kwargs): """ Inputs needed: Assuming, max_gen_tokens = 1 + nb*(bl - 1), counting true token device_request_types: [bs] draft_tokens: [bs, nb, bl] draft_indices: [bs, nb, bl] draft_probs: [bs, nb, bl-1, V] spec_decoding_generation_lengths: [bs] spec_decoding_position_offsets: [bs, max_gen_tokens] spec_decoding_packed_mask: [bs, max_gen_tokens, packed_length] ** redrafter_inverted_temperature: [bs] rand_data_sample: [bs] rand_data_validation: [bs, nb, bl-1] ** The mask is tricky since the boolean mask will need to be packed in runtime. So, the last dim will be: packed_length = ceil(max_gen_tokens/32) """ default_range = GenerationMixin.default_range remove_input_padding = default_net().plugin_config.remove_input_padding use_gpt_attention_plugin = default_net( ).plugin_config.gpt_attention_plugin use_gemm_plugin = default_net().plugin_config.gemm_plugin paged_kv_cache = default_net().plugin_config.paged_kv_cache max_batch_size = kwargs['max_batch_size'] assert max_batch_size is not None bb_range = default_range(max_batch_size) bb0_range = default_range(max_batch_size, min_range=0, opt_offset=1) num_beam_tokens = self.num_beams * self.beam_length max_draft_tokens = num_beam_tokens - self.num_beams # ignore the true token max_gen_token_len = 1 + max_draft_tokens # for the true token max_gen_token_len_range = default_range(max_gen_token_len) bb_max_gen_token_len_range = default_range(max_gen_token_len * max_batch_size, min_range=0) kwargs['speculative_decoding_draft_tokens_external'] = False kwargs['max_draft_len'] = max_draft_tokens kwargs['spec_decoding_is_generation_length_variable'] = True inputs = super().prepare_inputs(*args, **kwargs) assert inputs['spec_decoding_params'] is not None enable_two_optimization_profiles = GenerationMixin.has_ctx_gen_opt_profiles( use_gpt_attention_plugin=use_gpt_attention_plugin, use_gemm_plugin=use_gemm_plugin, remove_input_padding=remove_input_padding, kv_cache_type=KVCacheType.PAGED if paged_kv_cache else KVCacheType.CONTINUOUS) if enable_two_optimization_profiles: bb_range = [bb_range, bb_range] bb0_range = [bb0_range, bb0_range] max_gen_token_len_range = [ max_gen_token_len_range, max_gen_token_len_range ] bb_max_gen_token_len_range = [ bb_max_gen_token_len_range, bb_max_gen_token_len_range ] num_beams_range = [self.num_beams, self.num_beams] beam_length_range = [self.beam_length, self.beam_length] candidate_length_range = [ self.beam_candidate_length, self.beam_candidate_length ] vocab_size_range = [self.vocab_size, self.vocab_size] else: bb_range = [bb_range] bb0_range = [bb0_range] max_gen_token_len_range = [max_gen_token_len_range] bb_max_gen_token_len_range = [bb_max_gen_token_len_range] num_beams_range = [self.num_beams] beam_length_range = [self.beam_length] candidate_length_range = [self.beam_candidate_length] vocab_size_range = [self.vocab_size] device_request_types = Tensor(name='device_request_types', dtype=trt.int32, shape=[-1], dim_range=OrderedDict([ ('batch_size', bb_range), ])) draft_tokens = Tensor(name='draft_tokens', dtype=trt.int32, shape=[-1, self.num_beams, self.beam_length], dim_range=OrderedDict([ ('batch_size_wt0', bb0_range), ('num_beams', num_beams_range), ('beam_length', beam_length_range), ])) draft_indices = Tensor(name='draft_indices', dtype=trt.int32, shape=[-1, self.num_beams, self.beam_length], dim_range=OrderedDict([ ('batch_size_wt0', bb0_range), ('num_beams', num_beams_range), ('beam_length', beam_length_range), ])) draft_probs = Tensor( name='draft_probs', dtype=self.dtype, shape=[-1, self.num_beams, self.beam_length - 1, self.vocab_size], dim_range=OrderedDict([ ('batch_size_wt0', bb0_range), ('num_beams', num_beams_range), ('candidate_length', candidate_length_range), ('vocab_size', vocab_size_range), ])) redrafter_inverted_temperature = Tensor( name='redrafter_inverted_temperature', dtype=self.dtype, shape=[-1], dim_range=OrderedDict([ ("batch_size", bb_range), ])) rand_data_validation = Tensor( name='rand_data_validation', dtype=self.dtype, shape=[-1, self.num_beams, self.beam_length - 1], dim_range=OrderedDict([ ('batch_size_wt0', bb0_range), ('num_beams', num_beams_range), ('candidate_length', candidate_length_range), ])) rand_data_sample = Tensor(name='rand_data_sample', dtype=self.dtype, shape=[-1], dim_range=OrderedDict([ ('batch_size', bb_range), ])) position_ids_base = Tensor( name="position_ids_base", dtype=trt.int32, shape=[-1], dim_range=OrderedDict([ ("batch_size", bb_range), ]), ) inputs[ 'device_request_types'] = device_request_types # needed by process_logits inputs['draft_tokens'] = draft_tokens inputs['draft_indices'] = draft_indices inputs['draft_probs'] = draft_probs inputs[ 'redrafter_inverted_temperature'] = redrafter_inverted_temperature inputs['rand_data_validation'] = rand_data_validation inputs['rand_data_sample'] = rand_data_sample inputs['position_ids_base'] = position_ids_base return inputs