Source code for tensorrt_llm.runtime.generation

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import math
import platform
from collections import Counter
from dataclasses import dataclass, field
from functools import reduce, wraps
from pathlib import Path
from typing import Dict, Iterable, List, Optional, Sequence, Set, Union

import numpy as np

# isort: off
import torch
import tensorrt as trt
# isort: on
from cuda import cudart

from tensorrt_llm.runtime.memory_pools.memory_pools_allocator import \
    MemoryPoolsAllocator
from tensorrt_llm.runtime.memory_pools.pools_kv_cache_manager import \
    PoolsKVCacheManager
from tensorrt_llm.runtime.redrafter_utils import *

from .._utils import (pad_vocab_size, str_dtype_to_torch, torch_to_numpy,
                      trt_dtype_to_torch)
from ..bindings import KVCacheType
from ..logger import logger
from ..lora_manager import LoraManager
from ..mapping import Mapping
from ..plugin.plugin import CustomAllReduceHelper
from ..quantization import QuantMode
from .kv_cache_manager import GenerationSequence, KVCacheUpdater
from .session import _scoped_stream


[docs] def decode_words_list(word_dict: List[List[str]], tokenizer=None, add_special_tokens=False): ''' format of word_dict len(word_dict) should be same to batch_size word_dict[i] means the words for batch i len(word_dict[i]) >= 1, which means it must contain at least 1 string For example, word_dict[2] = [" I am happy", " I am sad"]. ''' assert tokenizer != None, "need to set tokenizer" decoded_words_batch = [] for word_dict_item in word_dict: decoded_words_request = [] for item in word_dict_item: if isinstance(item, bytes): item = [item.decode()] ids = tokenizer.encode(item, add_special_tokens=add_special_tokens) if len(ids) == 0: continue decoded_words_request.append(ids) decoded_words_batch.append(decoded_words_request) return decoded_words_batch
def to_word_list_format(word_dict: List[List[List[int]]]): ''' format of word_dict len(word_dict) should be same to batch_size word_dict[i] means the words for batch i len(word_dict[i]) >= 1, which means it must contain at least 1 word For example, word_dict[2] = [[1, 267], [534]] has two words. ''' flat_ids = [] offsets = [] for word_dict_item in word_dict: items_flat_ids = [] items_offsets = [] for ids in word_dict_item: items_flat_ids += ids items_offsets.append(len(ids)) flat_ids.append(np.array(items_flat_ids)) offsets.append(np.cumsum(np.array(items_offsets))) pad_to = max(1, max(len(ids) for ids in flat_ids)) for i, (ids, offs) in enumerate(zip(flat_ids, offsets)): flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0) offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1) return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2)) def _prepare_input_ids(tensors: Sequence[torch.Tensor]): tensors = [torch.flatten(t) for t in tensors] data = torch.concat(tensors) row_lengths = [t.size(0) for t in tensors] row_lengths = torch.tensor(row_lengths, dtype=torch.int32, device=data.device) return (data, row_lengths) def CUASSERT(cuda_ret): err = cuda_ret[0] if err != cudart.cudaError_t.cudaSuccess: raise RuntimeError( f"CUDA ERROR: {err}, error code reference: https://nvidia.github.io/cuda-python/module/cudart.html#cuda.cudart.cudaError_t" ) if len(cuda_ret) > 1: return cuda_ret[1:] return None def _update_cuda_graph_instance(instance, graph): err = cudart.cudaGraphExecUpdate(instance, graph) if err != cudart.cudaError_t.cudaSuccess: # When updating cuda graph failed, destroy and instantiate one. CUASSERT(cudart.cudaGraphExecDestroy(instance)) instance = CUASSERT(cudart.cudaGraphInstantiate(graph, 0))[0] return instance def _prepare_attention_mask(input_ids: torch.Tensor, pad_id: Optional[int] = None): is_pad_id_in_inputs = (pad_id is not None) and (pad_id in input_ids) if input_ids is not None and is_pad_id_in_inputs: mask = input_ids.ne(pad_id).int() # for enc-dec models, pad_id could be the start token and should be always counted # as valid token rather than padded token, so we force its mask to be 1. # This doesn't impact the existing behavior mask[:, 0] = 1 return mask else: return torch.ones(input_ids.shape, dtype=torch.int32, device=input_ids.device) def _tile_beam_width(tensor: torch.Tensor, num_beams: int): new_shape = np.array(tensor.shape) new_shape[0] = new_shape[0] * num_beams tile_size = np.ones(new_shape.shape, dtype=np.int32) tile_size = np.insert(tile_size, 1, num_beams) new_tensor = torch.unsqueeze(tensor, 1) new_tensor = new_tensor.tile(tile_size.tolist()) new_tensor = new_tensor.reshape(new_shape.tolist()) return new_tensor class _Profiler(trt.IProfiler): def __init__(self): super().__init__() self.results = [] def report_layer_time(self, layer_name, ms): self.results.append((layer_name, ms)) def _contiguous_tile_beam_width(tensor: torch.Tensor, size: int, num_beams: int): new_shape = list(tensor.shape) new_shape[0] *= num_beams numel = tensor.numel() new_tensor = torch.empty(num_beams * numel, device=tensor.device, dtype=tensor.dtype) # Take the first 'size' values to tile and skip the others. vals = tensor.view(-1)[:size] for i in range(num_beams): new_tensor[i * size:(i + 1) * size] = vals return new_tensor.view(new_shape) class _Runtime(object): runtime_rank: int runtime: trt.Runtime engine: trt.ICudaEngine ctx_context: trt.IExecutionContext context_0: trt.IExecutionContext context_1: trt.IExecutionContext profiler: _Profiler engine_inspector: trt.EngineInspector cuda_graph_instances: List[cudart.cudaGraphExec_t] input_tensor_names: Set[str] output_tensor_names: Set[str] def __init__(self, engine_buffer, mapping: Mapping): self.address = None self.device_memory_size = 0 self.__prepare(mapping, engine_buffer) def _serialize_engine(self) -> trt.IHostMemory: return self.engine.serialize() def __create_and_setup_context(self, address, size, profile_idx, stream) -> trt.IExecutionContext: context = self.engine.create_execution_context_without_device_memory() assert context is not None, "Failed to create an execution context with the provided device memory!" context.set_device_memory(address, size) context.set_optimization_profile_async(profile_idx, stream) # If nvtx verbosity is DETAILED, change it to LAYER_NAMES_ONLY for inference performance if context.nvtx_verbosity == trt.ProfilingVerbosity.DETAILED: context.nvtx_verbosity = trt.ProfilingVerbosity.LAYER_NAMES_ONLY return context def _set_profiler(self): if self.profiler is not None: return assert self.context_0 is not None assert self.context_1 is not None self.profiler = _Profiler() self.context_0.profiler = self.profiler self.context_0.enqueue_emits_profile = False self.context_1.profiler = self.profiler self.context_1.enqueue_emits_profile = False if self.engine.num_optimization_profiles == 2: assert self.ctx_context is not None self.ctx_context.profiler = self.profiler self.ctx_context.enqueue_emits_profile = False def __prepare(self, mapping: Mapping, engine_buffer): self.runtime_rank = mapping.rank local_rank = self.runtime_rank % mapping.gpus_per_node torch.cuda.set_device(local_rank) CUASSERT(cudart.cudaSetDevice(local_rank)) self.runtime = trt.Runtime(logger.trt_logger) self.engine = self.runtime.deserialize_cuda_engine(engine_buffer) assert self.engine is not None self.input_tensor_names = set() self.output_tensor_names = set() for i in range(self.engine.num_io_tensors): name = self.engine.get_tensor_name(i) if self.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT: self.output_tensor_names.add(name) else: self.input_tensor_names.add(name) self.profiler = None self.engine_inspector = self.engine.create_engine_inspector() # cuda graph ping-pong instances self.cuda_graph_instances = [None for _ in range(2)] if not self.engine.streamable_weights_size: # engine does not have weight streaming enabled self.__prepare_execution_contexts() def __prepare_execution_contexts(self): self.context_0 = None self.context_1 = None self.ctx_context = None # The device_memory_size_v2 stores the memory required by the largest profile. # When weight streaming is enable, it must be queried after the weight streaming budget set. if self.address: if self.device_memory_size != self.engine.device_memory_size_v2: self.device_memory_size = self.engine.device_memory_size_v2 CUASSERT(cudart.cudaFree(self.address)) address = CUASSERT(cudart.cudaMalloc( self.device_memory_size))[0] self.address = address else: self.device_memory_size = self.engine.device_memory_size_v2 address = CUASSERT(cudart.cudaMalloc(self.device_memory_size))[0] self.address = address with _scoped_stream() as stream: if self.engine.num_optimization_profiles == 1: # At step = 0, context_1 is active # At step = 1, context_0 is active # At step = 2, context_1 is active self.context_0 = self.__create_and_setup_context( self.address, self.device_memory_size, 0, stream) self.context_1 = self.__create_and_setup_context( self.address, self.device_memory_size, 0, stream) self.ctx_context = self.context_1 elif self.engine.num_optimization_profiles == 2: # At step = 0, ctx_context is active # At step = 1, context_0 is active # At step = 2, context_1 is active self.ctx_context = self.__create_and_setup_context( self.address, self.device_memory_size, 0, stream) self.context_0 = self.__create_and_setup_context( self.address, self.device_memory_size, 1, stream) self.context_1 = self.__create_and_setup_context( self.address, self.device_memory_size, 1, stream) else: logger.error( f"Number of optimization profiles: {self.engine.num_optimization_profiles}" ) raise NotImplementedError( "Python runtime only support 1 or 2 optimization profiles, " "set --multiple_profiles=disable when calling trtllm-build " "to disable the feature.") def _set_shape(self, context: trt.IExecutionContext, shape_dict: Dict[str, List[int]]): for i in range(self.engine.num_io_tensors): name = self.engine.get_tensor_name(i) if name not in shape_dict: # shape and buffer can be set by calling _set_tensors API continue if self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT: ok = context.set_input_shape(name, shape_dict[name]) dtype = self.engine.get_tensor_dtype(name) logger.debug( f"setting input tensor {name} with shape {shape_dict[name]} and type {dtype}" ) if not ok: raise ValueError( f"Couldn't assign {name} with shape {shape_dict[name]}, " f"engine supports [min, opt, max] = {self.engine.get_tensor_profile_shape(name, context.active_optimization_profile)}" ) def _set_buffer(self, context: trt.IExecutionContext, buffer_dict: Dict[str, torch.Tensor]): for i in range(self.engine.num_io_tensors): name = self.engine.get_tensor_name(i) if name not in buffer_dict.keys(): dtype = self.engine.get_tensor_dtype(name) shape = context.get_tensor_shape(name) buffer_dict[name] = torch.zeros(tuple(shape), dtype=trt_dtype_to_torch(dtype), device='cuda') assert buffer_dict[name].is_contiguous( ), f"{name} is not contiguous()" context.set_tensor_address(name, buffer_dict[name].data_ptr()) def _set_tensors(self, context: trt.IExecutionContext, tensors: Dict[str, "RuntimeTensor"]): for name in self.input_tensor_names: # it's allowed to call set_tensors multi times with different tensors # each time only set some of the engine tensors, so it is valid to skip the ones not in the current given tensors dict if name not in tensors: continue tensor = tensors[name] if context.get_tensor_address(name) != tensor.data: context.set_tensor_address(name, tensor.data) if list(context.get_tensor_shape(name)) != tensor.shape: context.set_input_shape(name, tensor.shape) for name in self.output_tensor_names: if name not in tensors: dtype = self.engine.get_tensor_dtype(name) shape = context.get_tensor_shape(name) tensors[name] = RuntimeTensor.from_torch( name, torch.zeros(tuple(shape), dtype=trt_dtype_to_torch(dtype), device='cuda')) t = tensors[name] # output's shape is inference by TRT, no need to set the shape here context.set_tensor_address(t.name, t.data) def _set_weight_streaming(self, gpu_weights_percent): if not self.engine.streamable_weights_size: assert gpu_weights_percent == 1, "Engine built without weight streaming. Cannot set gpu_weights_percent to a value other than 1." return assert self.engine is not None self.context_0 = None self.context_1 = None self.ctx_context = None min = 0 max = self.engine.streamable_weights_size budget = int(gpu_weights_percent * max) self.engine.weight_streaming_budget_v2 = budget assert self.engine.weight_streaming_budget_v2 == budget, "Failed to set weight streaming budget!" logger.info( f"Set gpu weights percent to {gpu_weights_percent}, which is {budget} bytes. Valid range: {min} bytes ~ {max} bytes." ) try: self.__prepare_execution_contexts() except: free_mem = torch.cuda.mem_get_info()[0] if free_mem < budget: print( f"Failed to create context. Possibly out of memory: Memory budget is {budget} bytes but only {free_mem} bytes are available on the GPU." ) raise def _check_tensors(self, context: trt.IExecutionContext) -> None: tensors = [] for i in range(self.engine.num_io_tensors): name = self.engine.get_tensor_name(i) ptr = context.get_tensor_address(name) if ptr == 0: raise RuntimeError(f"Engine I/O tensor {name} is unbound") shp = list(context.get_tensor_shape(name)) if any([s < 0 for s in shp]): # skip if shape is not available continue dt = self.engine.get_tensor_dtype(name) tdt = trt_dtype_to_torch(dt) sz = torch.tensor([], dtype=tdt).element_size() * np.prod(shp) tensors.append((ptr, ptr + sz, name, shp, sz)) tensors.sort() # sort by start address starts, ends, names, _, _ = zip(*tensors) starts = torch.tensor(starts) ends = torch.tensor(ends) overalps = (torch.nonzero((starts[1:] < ends[:-1]).int()) + 1).squeeze() if overalps.ndim == 0: # unsqueeze if there is a single value so it became scalar overalps = torch.unsqueeze(overalps, 0) if overalps.numel() > 0: assert overalps.ndim == 1 for i in list(overalps): left_name = names[i] right_name = names[i - 1] if "key_value" in left_name and "key_value" in right_name: # kv left_names = left_name.split("_") right_names = right_name.split("_") if left_names[-1] == right_names[-1]: # same kv layer assert (left_names[0] == "past" and right_names[0] == "present") or ( left_names[0] == "present" and right_names[0] == "past"), \ f"Overlap found between {tensors[i]} and {tensors[i-1]}" continue logger.warning( f"TENSOR BUFFER OVERLAP DETECTED: {tensors[i]} and {tensors[i-1]} !!!" ) return def _insert_step_to_profiler(self, step: int): if not self.profiler: raise RuntimeError("Profiler is disable") self.profiler.results.append(("step", step)) def _is_profiling(self): return self.profiler is not None def _run(self, context: trt.IExecutionContext, stream: Union[int, torch.cuda.Stream] = None) -> bool: if stream is None: stream = torch.cuda.current_stream().cuda_stream elif isinstance(stream, torch.cuda.Stream): stream = stream.cuda_stream ok = context.execute_async_v3(stream) return ok def __del__(self): try: if self.address is not None: cudart.cudaFree(self.address) except TypeError: pass @property def context_mem_size(self) -> int: return self.engine.device_memory_size_v2
[docs] @dataclass class ModelConfig: max_batch_size: int max_beam_width: int vocab_size: int num_layers: int num_heads: int num_kv_heads: int hidden_size: int gpt_attention_plugin: bool remove_input_padding: bool = False model_name: str = "" kv_cache_type: KVCacheType = KVCacheType.CONTINUOUS cross_attention: bool = False head_size: int = None has_position_embedding: bool = True has_token_type_embedding: bool = False tokens_per_block: int = 64 max_prompt_embedding_table_size: int = 0 quant_mode: QuantMode = QuantMode(0) gather_context_logits: bool = False gather_generation_logits: bool = False dtype: str = "" lora_plugin: bool = False lora_target_modules: List[str] = field(default_factory=list) trtllm_modules_to_hf_modules: dict = None skip_cross_qkv: bool = False num_medusa_heads: int = 0 max_medusa_tokens: int = 0 paged_state: bool = True mamba_conv1d_plugin: bool = True conv_kernel: int = 0 layer_types: List[str] = field(default_factory=list) rnn_hidden_size: int = 0 rnn_head_size: int = 0 rnn_conv_dim_size: int = 0 state_size: int = 0 state_dtype: str = "" gpu_weights_percent: float = 1.0 # ReDrafter redrafter_num_beams: int = 0 redrafter_draft_len_per_beam: int = 0 num_kv_heads_per_layer: Optional[List[int]] = None
[docs] @dataclass class SamplingConfig: end_id: int pad_id: int max_new_tokens: int = field(default=20) num_beams: int = field(default=1) max_attention_window_size: Optional[int] = field(default=None) sink_token_length: Optional[int] = field(default=None) output_sequence_lengths: bool = field(default=False) return_dict: bool = field(default=False) stop_words_list: Optional[torch.Tensor] = field(default=None) bad_words_list: Optional[torch.Tensor] = field(default=None) temperature: Union[float, torch.Tensor] = field(default=1.0) top_k: Union[int, torch.Tensor] = field(default=1) top_p: Union[float, torch.Tensor] = field(default=0.0) top_p_decay: Optional[torch.Tensor] = field(default=None) # float top_p_min: Optional[torch.Tensor] = field(default=None) # float top_p_reset_ids: Optional[torch.Tensor] = field(default=None) # int length_penalty: Union[float, torch.Tensor] = field(default=1.0) early_stopping: Union[int, torch.Tensor] = field(default=1) repetition_penalty: Union[float, torch.Tensor] = field(default=1.0) min_length: Union[int, torch.Tensor] = field(default=1) presence_penalty: Union[float, torch.Tensor] = field(default=0.0) frequency_penalty: Union[float, torch.Tensor] = field(default=0.0) use_beam_hyps: bool = field(default=True) # None here means user didn't set it, and dynamicDecodeOp.cpp take optional value # The real default value is set in dynamicDecodeOp.cpp when it's None beam_search_diversity_rate: Union[float, torch.Tensor] = field(init=False, default=0.0) random_seed: Union[int, torch.Tensor] = field(init=False, default=None) output_cum_log_probs: bool = field(init=False, default=False) output_log_probs: bool = field(init=False, default=False) no_repeat_ngram_size: Union[int, torch.Tensor] = field(init=False, default=None)
[docs] def update(self, **kwargs): unused_kwargs = dict() for key, value in kwargs.items(): if hasattr(self, key): setattr(self, key, value) else: unused_kwargs[key] = value return unused_kwargs
[docs] class LogitsProcessor: """ Base class for all logit processors that can be applied during generation. """ def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
[docs] class LogitsProcessorList(list, LogitsProcessor): def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: for processor in self: scores = processor(step, input_ids, scores) return scores
[docs] class StoppingCriteria: """ Base class for all stopping criteria that can be applied during generation. """ def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed")
[docs] class StoppingCriteriaList(list, StoppingCriteria): def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor) -> bool: return any(criteria(step, input_ids, scores) for criteria in self)
class RuntimeTensor: def __init__(self): self._name = "" # shape is the one sent to TRT, the actual torch tensor can be larger than the shape # this is useful when allocating a big KV cache tensor at the beginning and incremental seq length dim of TRT engine's input tensor self._shape = None self._torch_tensor = None @staticmethod def from_torch( name: str, data: torch.Tensor, override_shape: Optional[Iterable] = None) -> 'RuntimeTensor': assert (isinstance(data, torch.Tensor)) t = RuntimeTensor() t._name = name # need to hold the torch tensor for memory life time t._torch_tensor = data.contiguous() torch_shape = list(data.size()) if override_shape is not None: t._shape = override_shape assert isinstance(override_shape, list) or isinstance( override_shape, tuple) assert all([lambda x: x >= 0 for x in override_shape ]), f"Expect all dimensions >=0, got {override_shape}" def volume_func(dims): return reduce(lambda x, y: x * y, dims, 1) assert volume_func(override_shape) <= volume_func(torch_shape), \ f"Override the shape to be larger than the underlying torch Tensor, got {override_shape}, torch tensor shape {torch_shape}" else: t._shape = torch_shape return t def to_torch(self) -> torch.Tensor: return self._torch_tensor @property def shape(self) -> Iterable[int]: return self._shape @property def data(self): return self._torch_tensor.data_ptr() @property def name(self) -> str: return self._name @property def dtype(self) -> torch.dtype: return self._torch_tensor.dtype
[docs] class GenerationSession(object): _model_config: ModelConfig mapping: Mapping runtime: _Runtime device: torch.device batch_size: int buffer_allocated: bool debug_mode: bool quant_mode: QuantMode cuda_graph_mode: bool dtype: trt.DataType debug_tensors_to_save: None num_draft_tokens: int = 0 medusa_topks: List[int] = None medusa_paths: List[List[int]] = None medusa_tree_ids: List[int] = None medusa_position_offsets: List[int] = None medusa_temperature: float = 0.0 def __init__(self, model_config: ModelConfig, engine_buffer, mapping: Mapping, debug_mode=False, debug_tensors_to_save=None, cuda_graph_mode=False, stream: torch.cuda.Stream = None): assert isinstance(model_config, ModelConfig) self._model_config = model_config self.mapping = mapping self.runtime = _Runtime(engine_buffer, mapping) self.device = torch.device( f'cuda:{self.runtime.runtime_rank % mapping.gpus_per_node}') torch.cuda.set_device(self.device) # dynamic_decoder currently use torch's current stream, so must let TRT enqueue use same stream here self.stream = stream if self.stream is None: self.stream = torch.cuda.Stream(self.device) torch.cuda.set_stream(self.stream) self.debug_mode = debug_mode self.debug_tensors_to_save = debug_tensors_to_save self.cuda_graph_mode = cuda_graph_mode # Optional inputs for dynamic decoder self.top_p_decay = None self.top_p_min = None self.top_p_reset_ids = None # TODO: in tensorrt_llm/cpp/tensorrt_llm/thop/dynamicDecodeOp.cpp it's T, can be float or half? self.embedding_bias_opt = None # use one more block in paged kv cache. self.use_one_more_block = False self.buffer = None self.buffer_allocated = False self.vocab_size_padded = pad_vocab_size(self.vocab_size, self.mapping.tp_size) if len(model_config.layer_types) == 0: self.layer_types = ['attention'] * model_config.num_layers else: layer_types = model_config.layer_types layer_types = layer_types * (model_config.num_layers // len(layer_types)) layer_types = layer_types + layer_types[0:(model_config.num_layers % len(layer_types))] self.layer_types = layer_types self.num_attn_layers = \ self.layer_types[self.first_layer:self.last_layer].count('attention') self.has_attn_layers = self.num_attn_layers > 0 self.has_rnn_layers = 'recurrent' in self.layer_types[ self.first_layer:self.last_layer] self.attn_to_general_idx = {} self.general_to_attn_idx = {} attn_layer_idx = 0 for i in range(self.first_layer, self.last_layer): if self.layer_types[i] == 'attention': self.attn_to_general_idx[attn_layer_idx] = i self.general_to_attn_idx[i] = attn_layer_idx attn_layer_idx += 1 # Cyclic KV cache buffer names. if self.attn_to_general_idx: self.kv_cache_buffer_names = [ f'present_key_value_{layer_idx}' for _, layer_idx in self.attn_to_general_idx.items() ] + [f'1_present_key_value_{self.attn_to_general_idx[0]}'] else: self.kv_cache_buffer_names = [] if self.paged_kv_cache: logger.warning( "The paged KV cache in Python runtime is experimental. For performance and correctness, please, use C++ runtime." ) if self.mapping.has_pp(): self.nccl_comm = torch.classes.trtllm.NcclCommunicatorOp( self.mapping.tp_size, self.mapping.pp_size, self.mapping.rank) if self.mapping.is_last_pp_rank(): self.decoder_logits_dtype = self._tensor_dtype('logits') if self.decoder_logits_dtype not in [torch.float16, torch.float32]: logger.warning( "Logits dtype not supported by decoder. Falling back to float32. You may want to change the logits dtype to float16 in your model definition." ) self.decoder_logits_dtype = torch.float32 self.dynamic_decoder = torch.classes.trtllm.DynamicDecodeOp( model_config.max_batch_size, model_config.max_beam_width, self.vocab_size, self.vocab_size_padded, self.mapping.tp_size, self.mapping.pp_size, self.decoder_logits_dtype) if self.mapping.tp_size > 1: self.ipc_buffers, self.all_reduce_workspace = CustomAllReduceHelper.allocate_workspace( self.mapping, CustomAllReduceHelper.max_workspace_size_auto( self.mapping.tp_size)) self.gather_tree = torch.ops.tensorrt_llm.gather_tree expected_tensor_names = [] if self.mapping.is_first_pp_rank(): expected_tensor_names += ['input_ids'] else: expected_tensor_names += ['hidden_states_input'] if self.mapping.is_last_pp_rank(): expected_tensor_names += ['logits'] if not model_config.gather_context_logits or self.has_rnn_layers: expected_tensor_names += ['last_token_ids'] else: expected_tensor_names += ['hidden_states_output'] if self.has_attn_layers: if model_config.has_position_embedding and self.mapping.is_first_pp_rank( ): expected_tensor_names += ['position_ids'] if model_config.has_token_type_embedding and self.mapping.is_first_pp_rank( ): expected_tensor_names += ['token_type_ids'] if self.use_kv_cache: expected_tensor_names += ['cache_indirection'] if self.paged_kv_cache and self.has_attn_layers: expected_tensor_names += [f'kv_cache_block_offsets'] expected_tensor_names += [f'host_kv_cache_block_offsets'] expected_tensor_names += [f'host_kv_cache_pool_pointers'] expected_tensor_names += [f'host_kv_cache_pool_mapping'] if self.cross_attention: expected_tensor_names += [f'cross_kv_cache_block_offsets'] expected_tensor_names += [f'host_cross_kv_cache_block_offsets'] expected_tensor_names += [f'host_cross_kv_cache_pool_pointers'] expected_tensor_names += [f'host_cross_kv_cache_pool_mapping'] else: # Refer to gpt_attention() inside functional.py if self.use_kv_cache and not self.paged_kv_cache: for i in range(self.first_layer, self.last_layer): if self.layer_types[i] == 'attention': expected_tensor_names += [ f'past_key_value_{i}', f'present_key_value_{i}' ] if model_config.cross_attention: if model_config.gpt_attention_plugin: for i in range(self.first_layer, self.last_layer): if self.layer_types[i] == 'attention': expected_tensor_names += [ f'cross_present_key_value_{i}', f'cross_past_key_value_{i}' ] else: expected_tensor_names += [ 'cross_attention_mask', ] if self.paged_state and self.has_rnn_layers: for i in range(self.first_layer, self.last_layer): if self.layer_types[i] == 'recurrent': expected_tensor_names += [ f'conv_state_ptr_{i}', f'rnn_state_ptr_{i}' ] expected_tensor_names += ['slot_mapping'] else: for i in range(self.first_layer, self.last_layer): if self.layer_types[i] == 'recurrent': expected_tensor_names += [ f'past_conv_state_{i}', f'present_conv_state_{i}', f'past_rnn_state_{i}', f'present_rnn_state_{i}' ] if model_config.gpt_attention_plugin and self.has_attn_layers: if self.use_kv_cache: expected_tensor_names += [ 'sequence_length', 'host_past_key_value_lengths' ] expected_tensor_names += [ 'context_lengths', 'host_request_types', 'host_sink_token_length', 'host_runtime_perf_knobs' ] expected_tensor_names += [f'host_max_attention_window_sizes'] if model_config.remove_input_padding: expected_tensor_names.append('host_context_lengths') else: if self.has_rnn_layers: expected_tensor_names += ['host_request_types'] if model_config.mamba_conv1d_plugin and model_config.remove_input_padding: expected_tensor_names.append('host_context_lengths') if self.has_attn_layers: expected_tensor_names += ['attention_mask'] if model_config.max_prompt_embedding_table_size > 0: expected_tensor_names += [ 'prompt_embedding_table', 'tasks', 'prompt_vocab_size' ] if model_config.cross_attention: expected_tensor_names += [ 'encoder_output', 'encoder_input_lengths', 'encoder_max_input_length', 'cross_kv_cache_gen', ] self.skip_cross_qkv = model_config.skip_cross_qkv if self.skip_cross_qkv: expected_tensor_names += ['cross_qkv_reuse'] if self.mapping.tp_size > 1: expected_tensor_names += ['all_reduce_workspace'] self.lora_target_modules = model_config.lora_target_modules self.missing_qkv_modules = LoraManager.get_missing_qkv_modules( self.lora_target_modules) if model_config.lora_plugin: for lora_module in (self.lora_target_modules + self.missing_qkv_modules): for i in range(self.first_layer, self.last_layer): expected_tensor_names += [ f'{lora_module}_lora_ranks_{i}', f'{lora_module}_lora_weights_pointers_{i}' ] if self.cross_attention and self.remove_input_padding: expected_tensor_names += ['host_encoder_input_lengths'] if model_config.num_medusa_heads > 0: expected_tensor_names += [ 'spec_decoding_generation_lengths', 'spec_decoding_position_offsets', 'spec_decoding_packed_mask', 'medusa_logits' ] if self.is_redrafter_mode: expected_tensor_names += get_redrafter_tensor_names() found_tensor_names = [ self.runtime.engine.get_tensor_name(i) for i in range(self.runtime.engine.num_io_tensors) ] if not self.debug_mode and set(expected_tensor_names) != set( found_tensor_names): logger.error( f"The following expected tensors are not found: {set(expected_tensor_names).difference(set(found_tensor_names))}" ) logger.error( f"Those tensors in engine are not expected: {set(found_tensor_names).difference(set(expected_tensor_names))}" ) logger.error(f"Expected tensor names: {expected_tensor_names}") logger.error(f"Found tensor names: {found_tensor_names}") raise RuntimeError( "Tensor names in engine are not the same as expected, to use this GenerationSession, " "you need to use PretrainedModel.prepare_inputs to create TRT Network inputs." ) if self.debug_mode: self.debug_tensors = list( set(found_tensor_names) - set(expected_tensor_names)) if self.debug_tensors_to_save is None: self.debug_tensors_to_save = self.debug_tensors logger.info(f"Debug tensors found: {self.debug_tensors}") logger.info(f"Debug tensors to save: {self.debug_tensors_to_save}") @property def context_mem_size(self) -> int: return self.runtime.context_mem_size @property def vocab_size(self): return self._model_config.vocab_size @property def num_layers(self): assert self._model_config.num_layers % self.mapping.pp_size == 0, \ f"num_layers {self._model_config.num_layers} must be a multiple of pipeline parallelism size {self.mapping.pp_size}" return self._model_config.num_layers // self.mapping.pp_size @property def first_layer(self): return self.num_layers * self.mapping.pp_rank @property def last_layer(self): return self.first_layer + self.num_layers @property def num_heads(self): return self._model_config.num_heads @property def hidden_size(self): return self._model_config.hidden_size @property def use_gpt_attention_plugin(self): return self._model_config.gpt_attention_plugin @property def use_mamba_conv1d_plugin(self): return self._model_config.mamba_conv1d_plugin @property def paged_kv_cache(self): return self._model_config.kv_cache_type == KVCacheType.PAGED @property def kv_cache_type(self): return self._model_config.kv_cache_type @property def use_kv_cache(self): return self._model_config.kv_cache_type != KVCacheType.DISABLED @property def tokens_per_block(self): return self._model_config.tokens_per_block @property def remove_input_padding(self): return self._model_config.remove_input_padding
[docs] def get_num_heads_kv(self, layer_idx: Optional[int] = None) -> int: if layer_idx is None or self._model_config.num_kv_heads_per_layer is None: return self._model_config.num_kv_heads if self._model_config.layer_types: assert self._model_config.layer_types[ layer_idx] == "attention", f"Layer {layer_idx} is not an attention layer" if self._model_config.num_kv_heads_per_layer: return self._model_config.num_kv_heads_per_layer[layer_idx] return self._model_config.num_kv_heads
@property def head_size(self): return self.hidden_size // self.num_heads if self._model_config.head_size is None else self._model_config.head_size @property def max_prompt_embedding_table_size(self): return self._model_config.max_prompt_embedding_table_size @property def quant_mode(self): return self._model_config.quant_mode @property def gather_context_logits(self): return self._model_config.gather_context_logits @property def gather_generation_logits(self): return self._model_config.gather_generation_logits @property def dtype(self): return str_dtype_to_torch(self._model_config.dtype) @property def profiler(self): return self.runtime.profiler @property def engine_inspector(self): return self.runtime.engine_inspector
[docs] def cuda_stream_guard(func): """Sync external stream and set current stream to the one bound to the session. Reset on exit. """ @wraps(func) def wrapper(self, *args, **kwargs): external_stream = torch.cuda.current_stream() if external_stream != self.stream: external_stream.synchronize() torch.cuda.set_stream(self.stream) ret = func(self, *args, **kwargs) if external_stream != self.stream: self.stream.synchronize() torch.cuda.set_stream(external_stream) return ret return wrapper
@property def cross_attention(self): return self._model_config.cross_attention @property def has_position_embedding(self): return self._model_config.has_position_embedding @property def has_token_type_embedding(self): return self._model_config.has_token_type_embedding @property def use_lora_plugin(self): return self._model_config.lora_plugin @property def is_medusa_mode(self): return self.num_medusa_heads > 0 @property def is_redrafter_mode(self): return self._model_config.redrafter_num_beams > 0 and self._model_config.redrafter_draft_len_per_beam > 0 @property def max_draft_tokens(self): if self.is_redrafter_mode: return self._model_config.redrafter_num_beams * self._model_config.redrafter_draft_len_per_beam return self._model_config.max_medusa_tokens @property def num_medusa_heads(self): return self._model_config.num_medusa_heads @property def paged_state(self): return self._model_config.paged_state @property def conv_kernel(self): return self._model_config.conv_kernel @property def rnn_hidden_size(self): return self._model_config.rnn_hidden_size @property def rnn_head_size(self): return self._model_config.rnn_head_size @property def rnn_conv_dim_size(self): return self._model_config.rnn_conv_dim_size @property def state_size(self): return self._model_config.state_size @property def state_dtype(self): if self._model_config.state_dtype == "": return str_dtype_to_torch(self._model_config.dtype) return str_dtype_to_torch(self._model_config.state_dtype) def _capture_cuda_graph_and_instantiate(self, context, stream, step): instance_idx = (step + 1) % 2 if not self.has_attn_layers: # Create two cuda graph once.If cuda graph has already existed, skip it. if self.runtime.cuda_graph_instances[instance_idx] is not None: return # capture cuda graph CUASSERT( cudart.cudaStreamBeginCapture( stream, cudart.cudaStreamCaptureMode.cudaStreamCaptureModeGlobal)) context.execute_async_v3(stream) next_graph = CUASSERT(cudart.cudaStreamEndCapture(stream))[0] if self.runtime.cuda_graph_instances[instance_idx] is not None: self.runtime.cuda_graph_instances[ instance_idx] = _update_cuda_graph_instance( self.runtime.cuda_graph_instances[instance_idx], next_graph) else: self.runtime.cuda_graph_instances[instance_idx] = CUASSERT( cudart.cudaGraphInstantiate(next_graph, 0))[0] # Pre-upload cuda graph to stream CUASSERT( cudart.cudaGraphUpload( self.runtime.cuda_graph_instances[instance_idx], stream)) def __setup_decoder(self, input_ids: torch.Tensor, sampling_config: SamplingConfig, host_context_lengths: torch.Tensor): '''Allocate buffers and setup the post-processing decoder kernel ''' batch_size = host_context_lengths.shape[0] scfg = sampling_config # just to make a shorter name, no other meaning if isinstance(scfg.top_k, torch.Tensor): assert scfg.top_k.dtype == torch.int32, f"scfg.top_k.dtype ({scfg.top_k.dtype}) must be torch.int32" assert scfg.top_k.shape[ 0] == batch_size, f"scfg.top_k.shape[0] ({scfg.top_k.shape[0]}) must equal to batch_size ({batch_size})" self.top_k = scfg.top_k else: self.top_k = torch.full([batch_size], scfg.top_k, dtype=torch.int32) if isinstance(scfg.top_p, torch.Tensor): assert scfg.top_p.dtype == torch.float32, f"scfg.top_p.dtype ({scfg.top_p.dtype}) must be torch.float32" assert scfg.top_p.shape[ 0] == batch_size, f"scfg.top_p.shape[0] ({scfg.top_p.shape[0]}) must equal to batch_size ({batch_size})" self.top_p = scfg.top_p else: self.top_p = torch.full([batch_size], scfg.top_p, dtype=torch.float32) if isinstance(scfg.temperature, torch.Tensor): assert scfg.temperature.dtype == torch.float32, f"scfg.temperature.dtype ({scfg.temperature.dtype}) must be torch.float32" assert scfg.temperature.shape[ 0] == batch_size, f"scfg.temperature.shape[0] ({scfg.temperature.shape[0]}) must equal to batch_size ({batch_size})" self.temperature = scfg.temperature else: self.temperature = torch.full([batch_size], scfg.temperature, dtype=torch.float32) if isinstance(scfg.repetition_penalty, torch.Tensor): assert scfg.repetition_penalty.dtype == torch.float32, f"scfg.repetition_penalty.dtype ({scfg.repetition_penalty.dtype}) must be torch.float32" assert scfg.repetition_penalty.shape[ 0] == batch_size, f"scfg.repetition_penalty.shape[0] ({scfg.repetition_penalty.shape[0]}) must equal to batch_size ({batch_size})" self.repetition_penalty = scfg.repetition_penalty elif scfg.repetition_penalty == 1.0: self.repetition_penalty = None else: self.repetition_penalty = torch.full([batch_size], scfg.repetition_penalty, dtype=torch.float32) if isinstance(scfg.length_penalty, torch.Tensor): assert scfg.length_penalty.dtype == torch.float32, f"scfg.length_penalty.dtype ({scfg.length_penalty.dtype}) must be torch.float32" assert scfg.length_penalty.shape[ 0] == batch_size, f"scfg.length_penalty.shape[0] ({scfg.length_penalty.shape[0]}) must equal to batch_size ({batch_size})" self.host_length_penalty = scfg.length_penalty else: self.host_length_penalty = torch.full([batch_size], scfg.length_penalty, dtype=torch.float32) self.length_penalty = self.host_length_penalty.to(self.device) if isinstance(scfg.early_stopping, torch.Tensor): assert scfg.early_stopping.dtype == torch.int32, f"scfg.early_stopping.dtype ({scfg.early_stopping.dtype}) must be torch.int32" assert scfg.early_stopping.shape[ 0] == batch_size, f"scfg.early_stopping.shape[0] ({scfg.early_stopping.shape[0]}) must equal to batch_size ({batch_size})" self.host_early_stopping = scfg.early_stopping else: self.host_early_stopping = torch.full([batch_size], scfg.early_stopping, dtype=torch.int32) if isinstance(scfg.presence_penalty, torch.Tensor): assert scfg.presence_penalty.dtype == torch.float32, f"scfg.presence_penalty.dtype ({scfg.presence_penalty.dtype}) must be torch.float32" assert scfg.presence_penalty.shape[ 0] == batch_size, f"scfg.presence_penalty.shape[0] ({scfg.presence_penalty.shape[0]}) must equal to batch_size ({batch_size})" self.presence_penalty = scfg.presence_penalty elif scfg.presence_penalty == 0.0: self.presence_penalty = None else: self.presence_penalty = torch.full([batch_size], scfg.presence_penalty, dtype=torch.float32) if isinstance(scfg.frequency_penalty, torch.Tensor): assert scfg.frequency_penalty.dtype == torch.float32, f"scfg.frequency_penalty.dtype ({scfg.frequency_penalty.dtype}) must be torch.float32" assert scfg.frequency_penalty.shape[ 0] == batch_size, f"scfg.frequency_penalty.shape[0] ({scfg.frequency_penalty.shape[0]}) must equal to batch_size ({batch_size})" self.frequency_penalty = scfg.frequency_penalty elif scfg.frequency_penalty == 0.0: self.frequency_penalty = None else: self.frequency_penalty = torch.full([batch_size], scfg.frequency_penalty, dtype=torch.float32) if isinstance(scfg.min_length, torch.Tensor): assert scfg.min_length.dtype == torch.int32, f"scfg.min_length.dtype ({scfg.min_length.dtype}) must be torch.int32" assert scfg.min_length.shape[ 0] == batch_size, f"scfg.min_length.shape[0] ({scfg.min_length.shape[0]}) must equal to batch_size ({batch_size})" self.min_length = scfg.min_length else: self.min_length = torch.full([batch_size], scfg.min_length, dtype=torch.int32) if isinstance(scfg.beam_search_diversity_rate, torch.Tensor): assert scfg.beam_search_diversity_rate.dtype == torch.float32, f"scfg.beam_search_diversity_rate.dtype ({scfg.beam_search_diversity_rate.dtype}) must be torch.float32" assert scfg.beam_search_diversity_rate.shape[ 0] == batch_size, f"scfg.beam_search_diversity_rate.shape[0] ({scfg.beam_search_diversity_rate.shape[0]}) must equal to batch_size ({batch_size})" self.beam_search_diversity_rate = scfg.beam_search_diversity_rate elif scfg.beam_search_diversity_rate is not None: self.beam_search_diversity_rate = torch.full( [batch_size], scfg.beam_search_diversity_rate, dtype=torch.float32) else: self.beam_search_diversity_rate = None if isinstance(scfg.random_seed, torch.Tensor): assert scfg.random_seed.dtype == torch.int64, f"scfg.random_seed.dtype ({scfg.random_seed.dtype}) must be torch.int64" assert scfg.random_seed.shape[ 0] == batch_size, f"scfg.random_seed.shape[0] ({scfg.random_seed.shape[0]}) must equal to batch_size ({batch_size})" self.random_seed = scfg.random_seed elif scfg.random_seed is not None: self.random_seed = torch.full([batch_size], scfg.random_seed, dtype=torch.int64) else: self.random_seed = None if isinstance(scfg.no_repeat_ngram_size, torch.Tensor): assert scfg.no_repeat_ngram_size.dtype == torch.int32, f"scfg.no_repeat_ngram_size.dtype ({scfg.no_repeat_ngram_size.dtype}) must be torch.int32" assert scfg.no_repeat_ngram_size.shape[ 0] == batch_size, f"scfg.no_repeat_ngram_size.shape[0] ({scfg.no_repeat_ngram_size.shape[0]}) must equal to batch_size ({batch_size})" self.no_repeat_ngram_size = scfg.no_repeat_ngram_size elif scfg.no_repeat_ngram_size is not None: self.no_repeat_ngram_size = torch.full([batch_size], scfg.no_repeat_ngram_size, dtype=torch.int32) else: self.no_repeat_ngram_size = None if self.mapping.is_last_pp_rank(): self.dynamic_decoder.setup( batch_size, scfg.num_beams, self.top_k, self.top_p, self.temperature, self.repetition_penalty, self.presence_penalty, self.frequency_penalty, self.min_length, self.host_length_penalty, self.host_early_stopping, self.beam_search_diversity_rate, self.random_seed, self.top_p_decay, self.top_p_min, self.top_p_reset_ids, self.no_repeat_ngram_size, scfg.output_log_probs, scfg.num_beams > 1 or scfg.output_cum_log_probs) assert scfg.end_id is not None, "end_id cannot be none" assert scfg.pad_id is not None, 'pad_id cannot be none' self.end_ids = torch.full((batch_size * scfg.num_beams, ), scfg.end_id, dtype=torch.int32, device=self.device) max_context_length = host_context_lengths.max() # setup output ids buffer if input_ids.dim() == 1: # input_ids only have one dimension, which means remove_padding is enabled split_ids_list = list( torch.split(input_ids.unsqueeze(0), host_context_lengths.numpy().tolist(), dim=1)) padded_input_ids = torch.nested.to_padded_tensor( torch.nested.nested_tensor(split_ids_list, dtype=torch.int32, device='cuda'), scfg.pad_id).reshape(batch_size, max_context_length) else: padded_input_ids = input_ids if scfg.num_beams > 1: tiled_input_ids = _tile_beam_width(padded_input_ids, scfg.num_beams) tiled_input_ids = tiled_input_ids.reshape(batch_size, scfg.num_beams, max_context_length) tiled_input_ids.permute(2, 0, 1) # TODO: delete? self.output_ids = torch.cat( (tiled_input_ids, torch.full((batch_size, scfg.num_beams, self.max_seq_length - max_context_length), scfg.end_id, dtype=padded_input_ids.dtype, device=padded_input_ids.device)), axis=-1) else: self.output_ids = torch.cat( (padded_input_ids, torch.full( (batch_size, self.max_seq_length - max_context_length), scfg.end_id, dtype=padded_input_ids.dtype, device=padded_input_ids.device)), axis=-1) # Note: we still allocate max_seq_length size of parent ids (not max_attention_window_size). self.parent_ids = torch.zeros( (batch_size, scfg.num_beams, self.max_seq_length), dtype=torch.int32, device=self.device) if self.is_redrafter_mode: self.new_tokens = torch.zeros([ batch_size, self._model_config.redrafter_draft_len_per_beam + 1 ], dtype=torch.int32, device=self.device) self.accept_lengths = torch.ones([batch_size], dtype=torch.int32, device=self.device) self.buffer["redrafter_inverted_temperature"] = torch.reciprocal( self.temperature).to(device=self.device, dtype=self.dtype) elif self.is_medusa_mode: self.new_tokens = torch.zeros( [batch_size, self.num_medusa_heads + 1], dtype=torch.int32, device=self.device) self.medusa_output_tokens = torch.zeros( [batch_size, self.num_draft_tokens], dtype=torch.int32, device=self.device) self.generation_input_ids = torch.zeros( [batch_size, self.num_draft_tokens + 1], dtype=torch.int32, device=self.device) self.accept_lengths = torch.ones([batch_size], dtype=torch.int32, device=self.device) if self.medusa_temperature != 0: self.medusa_output_logits = torch.empty( [batch_size, self.num_medusa_heads, self.vocab_size_padded], dtype=self._tensor_dtype('logits'), device=self.device) elif scfg.num_beams > 1: self.new_tokens = torch.zeros([batch_size, scfg.num_beams, 1], dtype=torch.int32, device=self.device) else: self.new_tokens = torch.zeros([batch_size, 1], dtype=torch.int32, device=self.device) if scfg.num_beams > 1 or scfg.output_cum_log_probs: self.cum_log_probs = torch.full((batch_size, scfg.num_beams), -1e20, dtype=torch.float32, device=self.device) self.cum_log_probs[:, 0] = 0.0 else: self.cum_log_probs = None if scfg.output_log_probs: self.log_probs = torch.zeros( (batch_size, scfg.num_beams, self.max_seq_length), dtype=torch.float32, device=self.device) self.log_probs_tiled = torch.zeros( (self.max_seq_length, self._model_config.max_batch_size, scfg.num_beams), dtype=torch.float32, device=self.device) else: self.log_probs = None self.log_probs_tiled = None self.finished = torch.zeros((batch_size, scfg.num_beams), dtype=torch.uint8, device=self.device) if scfg.use_beam_hyps: self.beam_hyps_output_ids_cba = torch.full( size=[batch_size, scfg.num_beams * 2, self.max_seq_length], fill_value=scfg.end_id, dtype=torch.int32, device=self.device) self.beam_hyps_seq_len_cba = torch.zeros( [batch_size, scfg.num_beams * 2], dtype=torch.int32, device=self.device) self.beam_hyps_cum_log_probs_cba = torch.zeros( [batch_size, scfg.num_beams * 2], dtype=torch.float, device=self.device) self.beam_hyps_normed_scores_cba = torch.zeros( [batch_size, scfg.num_beams * 2], dtype=torch.float, device=self.device) self.beam_hyps_log_probs_cba = torch.zeros( [batch_size, scfg.num_beams * 2, self.max_seq_length], dtype=torch.float, device=self.device) self.beam_hyps_min_normed_scores = torch.zeros([batch_size], dtype=torch.float, device=self.device) self.beam_hyps_num_beams = torch.zeros([batch_size], dtype=torch.int32, device=self.device) self.beam_hyps_is_done = torch.zeros([batch_size], dtype=torch.bool, device=self.device) else: self.beam_hyps_output_ids_cba = None self.beam_hyps_seq_len_cba = None self.beam_hyps_cum_log_probs_cba = None self.beam_hyps_normed_scores_cba = None self.beam_hyps_log_probs_cba = None self.beam_hyps_min_normed_scores = None self.beam_hyps_num_beams = None self.beam_hyps_is_done = None self.cross_qkv_reuse = None def _tensor_dtype(self, name): # return torch dtype given tensor name for convenience dtype = trt_dtype_to_torch(self.runtime.engine.get_tensor_dtype(name)) return dtype def _init_medusa(self, medusa_choices: List[List[int]]): from tensorrt_llm.runtime.medusa_utils import (_medusa_setup, expand_choices_if_needed) medusa_choices = expand_choices_if_needed(medusa_choices) self.num_draft_tokens = len(medusa_choices) assert self.num_draft_tokens > 0 and self.num_draft_tokens <= self.max_draft_tokens medusa_info = _medusa_setup(medusa_choices, self.num_medusa_heads) self.medusa_topks = medusa_info.medusa_topks self.medusa_mask = medusa_info.medusa_mask[1:, 1:].to( torch.bool ) # convert to bool, original mask includes true token as well # Expand medusa position offsets to number of batch size in order to be compatible with the new Medusa. target_shape = list(medusa_info.medusa_packed_mask.unsqueeze(0).shape) target_shape[0] = self.batch_size # Note: spec_decoding_packed_mask has no paddings in the first dimension. self.spec_decoding_packed_mask = medusa_info.medusa_packed_mask.unsqueeze( 0).expand(target_shape).reshape(-1, target_shape[-1]).cuda() self.medusa_paths = medusa_info.medusa_paths self.medusa_tree_ids = medusa_info.medusa_tree_ids # Expand medusa position offsets to number of batch size in order to be compatible with the new Medusa. target_shape = list( medusa_info.medusa_position_offsets.unsqueeze(0).shape) target_shape[0] = self.batch_size # Note: medusa_position_offsets still keeps the paddings in order to get max_gen_input_length from the shape info. self.spec_decoding_position_offsets = medusa_info.medusa_position_offsets.unsqueeze( 0).expand(target_shape).int().cuda() # Fixed sequence lengths currently. # Support variable sequence lengths later. self.spec_decoding_generation_lengths = (torch.ones( (self.batch_size)) * (self.num_draft_tokens + 1)).int().cuda() if not self.use_gpt_attention_plugin: medusa_fp_mask = torch.zeros_like(self.medusa_mask, dtype=torch.float32) medusa_fp_mask[torch.logical_not(self.medusa_mask)] = float('-inf') self.medusa_mask = medusa_fp_mask return def _get_num_paged_blocks(self, max_attention_window_size, sink_token_length, use_one_more_block): bubble_len = 0 if sink_token_length % self.tokens_per_block > 0: bubble_len += (self.tokens_per_block - sink_token_length % self.tokens_per_block) max_blocks_per_seq = math.ceil( (max_attention_window_size + bubble_len) / self.tokens_per_block) if use_one_more_block: max_blocks_per_seq += 1 num_blocks = self.batch_size * self.beam_width * max_blocks_per_seq return num_blocks, max_blocks_per_seq
[docs] def setup(self, batch_size: int, max_context_length: int, max_new_tokens: int, beam_width: int = 1, max_attention_window_size: Optional[int] = None, sink_token_length: Optional[int] = None, encoder_max_input_length: Optional[int] = None, lora_manager: LoraManager = None, lora_uids: List[str] = None, medusa_choices: List[List[int]] = None, multi_block_mode: bool = True, enable_context_fmha_fp32_acc: bool = None): # Store these params related to buffer size to check against # the input shape with the params given in decode() self.batch_size = batch_size self.max_context_length = max_context_length self.max_new_tokens = max_new_tokens self.max_seq_length = max_context_length + max_new_tokens if medusa_choices is not None or self.is_redrafter_mode: self.max_seq_length += self.max_draft_tokens self.beam_width = beam_width self.encoder_max_input_length = encoder_max_input_length self.multi_block_mode = multi_block_mode self.enable_context_fmha_fp32_acc = enable_context_fmha_fp32_acc if max_attention_window_size is None: self.max_attention_window_size = self.max_seq_length logger.debug( "The max_attention_window_size is not set, we will use max_seq_length by default." ) self.host_max_attention_window_sizes = torch.ones( (self.num_attn_layers, ), dtype=torch.int32) * self.max_attention_window_size elif isinstance(max_attention_window_size, int): if max_attention_window_size > self.max_seq_length: logger.warning( "The value of max_attention_window_size should ideally not exceed max_seq_length. " "Therefore, it has been adjusted to match the value of max_seq_length." ) self.max_attention_window_size = min(max_attention_window_size, self.max_seq_length) self.host_max_attention_window_sizes = torch.ones( (self.num_attn_layers, ), dtype=torch.int32) * self.max_attention_window_size elif isinstance(max_attention_window_size, (torch.Tensor, list)): if isinstance(max_attention_window_size, list): max_attention_window_size = torch.tensor( max_attention_window_size, dtype=torch.int32) self.max_attention_window_size = int( torch.max(max_attention_window_size).item()) attn_win_size_len = max_attention_window_size.shape[0] num_total_attn_layers = self.layer_types.count('attention') if attn_win_size_len < num_total_attn_layers: repeat_num = num_total_attn_layers // attn_win_size_len remain_num = num_total_attn_layers % attn_win_size_len warning_info = "The size of max_attention_window_size tensor/list is less than num_attn_layers, " \ + "and it will be repeated to num_attn_layers. So the actual max_attention_window_size " \ + f"is {max_attention_window_size.tolist()} * {repeat_num}" warning_info += f" + {max_attention_window_size.tolist()[0:remain_num]}. " if remain_num > 0 else ". " warning_info += "Note that num_attn_layers is the number of total attention layers." logger.warning(warning_info) elif attn_win_size_len > num_total_attn_layers: logger.error( "The size of max_attention_window_size tensor/list is larger than num_attn_layers! " "Note that num_attn_layers is the number of total attention layers." ) assert False if self.max_attention_window_size > self.max_seq_length: logger.warning( "The value of max_attention_window_size should ideally not exceed max_seq_length. " "Therefore, it has been adjusted to match the value of max_seq_length." ) self.max_attention_window_size = min(self.max_attention_window_size, self.max_seq_length) max_attention_window_size = torch.minimum( max_attention_window_size.to(torch.int32), torch.IntTensor([self.max_seq_length] * attn_win_size_len)) self.host_max_attention_window_sizes = torch.ones( (self.num_attn_layers, ), dtype=torch.int32) for i in range(self.num_attn_layers): self.host_max_attention_window_sizes[ i] = max_attention_window_size[ (self.layer_types[0:self.first_layer].count('attention') + i) % attn_win_size_len] else: assert False, "invalid max_attention_window_size!" if sink_token_length is None: self.sink_token_length = 0 self.host_sink_token_length = torch.zeros((1, ), dtype=torch.int32) elif isinstance(sink_token_length, int): self.sink_token_length = sink_token_length self.host_sink_token_length = torch.ones( (1, ), dtype=torch.int32) * self.sink_token_length else: assert False, "invalid sink_token_length!" self.use_one_more_block = ( self.paged_kv_cache and beam_width > 1 and self.max_seq_length > self.max_attention_window_size) self.lora_manager = lora_manager if medusa_choices is not None: self._init_medusa(medusa_choices) self.buffer = {} if self.mapping.is_last_pp_rank(): if self.is_redrafter_mode: init_allocate_redrafter_tensors(self, batch_size) self.buffer['logits'] = torch.empty( (batch_size, self.max_draft_tokens + 1, self.vocab_size_padded) if not self.gather_context_logits else (batch_size, max_context_length, self.vocab_size_padded), dtype=self._tensor_dtype('logits'), device=self.device) elif self.is_medusa_mode: self.buffer['logits'] = torch.empty( (batch_size, self.num_draft_tokens + 1, self.vocab_size_padded) if not self.gather_context_logits else (batch_size, max_context_length, self.vocab_size_padded), dtype=self._tensor_dtype('logits'), device=self.device) medusa_logits_shape = (self.num_medusa_heads, batch_size, (self.num_draft_tokens + 1), self.vocab_size_padded) if self.remove_input_padding: medusa_logits_shape = (self.num_medusa_heads, batch_size * (self.num_draft_tokens + 1), self.vocab_size_padded) self.buffer['medusa_logits'] = torch.empty( medusa_logits_shape if not self.gather_context_logits else (self.num_medusa_heads, batch_size, max_context_length, self.vocab_size_padded), dtype=self._tensor_dtype('medusa_logits'), device=self.device) else: self.buffer['logits'] = torch.empty( (batch_size, self.vocab_size_padded) if not self.gather_context_logits else (batch_size, max_context_length, self.vocab_size_padded), dtype=self._tensor_dtype('logits'), device=self.device) if self.cross_attention: # use shape info to pass max length info in remove padding mode self.buffer['encoder_max_input_length'] = torch.empty( (encoder_max_input_length, ), dtype=self._tensor_dtype('encoder_max_input_length'), device=self.device) if self.quant_mode.has_kv_cache_quant(): # Since torch does not support fp8 now, using int8 here. kv_cache_type = torch.int8 else: if self.use_kv_cache and self.has_attn_layers: first_atten_layer = self.layer_types[ self.first_layer:self.last_layer].index( 'attention') + self.first_layer kv_cache_type = self.dtype if self.paged_kv_cache else self._tensor_dtype( f'present_key_value_{first_atten_layer}') else: kv_cache_type = None if self.use_kv_cache: if self.paged_kv_cache and self.has_attn_layers: num_blocks, _ = self._get_num_paged_blocks( self.max_attention_window_size, self.sink_token_length, self.use_one_more_block) self._memory_pool_allocator = MemoryPoolsAllocator( num_blocks=num_blocks, tokens_per_block=self.tokens_per_block, head_size=self.head_size) if self._model_config.num_kv_heads_per_layer is None: num_kv_heads_per_layer = MemoryPoolsAllocator.prepare_num_kv_heads_per_layer( self.get_num_heads_kv(), self.num_attn_layers) else: num_kv_heads_per_layer = self._model_config.num_kv_heads_per_layer self._memory_pool_allocator.allocate(kv_cache_type, num_kv_heads_per_layer) if self.cross_attention: # As for now we enable cross paged kv and self paged kv to share the same tokens_per_block cross_num_blocks, _ = self._get_num_paged_blocks( self.encoder_max_input_length, sink_token_length=0, use_one_more_block=False) num_kv_heads_per_layer = MemoryPoolsAllocator.prepare_num_kv_heads_per_layer( self.get_num_heads_kv(), self.num_layers) self._cross_memory_pool_allocator = MemoryPoolsAllocator( num_blocks=cross_num_blocks, tokens_per_block=self.tokens_per_block, head_size=self.head_size) self._cross_memory_pool_allocator.allocate( kv_cache_type, num_kv_heads_per_layer) elif self.has_attn_layers: for i in range(self.first_layer, self.last_layer): if self.layer_types[i] == 'attention': cache_shape = ( batch_size, 2, self.get_num_heads_kv(i), self.max_attention_window_size, self.head_size, ) self.buffer[f'present_key_value_{i}'] = torch.empty( cache_shape, dtype=kv_cache_type, device=self.device) if self.cross_attention: cross_cache_shape = ( batch_size, 2, self.get_num_heads_kv(), self.encoder_max_input_length, self.head_size, ) for i in range(self.first_layer, self.last_layer): if self.layer_types[i] == 'attention': self.buffer[ f'cross_present_key_value_{i}'] = torch.empty( cross_cache_shape, dtype=kv_cache_type, device=self.device) if self.use_gpt_attention_plugin: self.sequence_length_buffer = torch.ones((batch_size, ), dtype=torch.int32, device=self.device) else: # Without plugin, we need extra kv cache buffers. # Because we don't support inplace update, so we need separate buffer for inputs and outputs. # We can do reuse between different layers' inputs and outputs, i.e. current layer's output can # reuse previous layer's input memory. But this need one extra buffer as the guard. if self.use_kv_cache and self.has_attn_layers: # Not applicable to cross KV buffers as it's constant i = self.attn_to_general_idx[0] trt_dtype = self.runtime.engine.get_tensor_dtype( f'present_key_value_{i}') if trt_dtype == trt.fp8: # PyTorch doesn't support fp8 datatype, use int8 instead of it because int8 datatype size is same with fp8. # TODO: Remove this section when PyTorch support fp8 datatype dtype = torch.int8 else: dtype = self._tensor_dtype(f'present_key_value_{i}') self.buffer[f'1_present_key_value_{i}'] = torch.empty( cache_shape, dtype=dtype, device=self.device) if self.use_mamba_conv1d_plugin: conv_state_shape = ( batch_size, self.conv_kernel - 1, self.rnn_conv_dim_size, ) else: conv_state_shape = ( batch_size, self.rnn_conv_dim_size, self.conv_kernel - 1, ) if self.rnn_head_size > 1: rnn_state_shape = ( batch_size, self.rnn_hidden_size // self.rnn_head_size, self.state_size, self.rnn_head_size, ) else: rnn_state_shape = ( batch_size, self.state_size, self.rnn_hidden_size, ) for i in range(self.first_layer, self.last_layer): if self.layer_types[i] == 'recurrent': dtype = self.dtype self.buffer[f'present_conv_state_{i}'] = torch.empty( conv_state_shape, dtype=dtype, device=self.device) self.buffer[f'1_present_conv_state_{i}'] = torch.empty( conv_state_shape, dtype=dtype, device=self.device) self.buffer[f'present_rnn_state_{i}'] = torch.empty( rnn_state_shape, dtype=self.state_dtype, device=self.device) if self.paged_state: conv_state_ptr = torch.tensor( [self.buffer[f'present_conv_state_{i}'].data_ptr()], dtype=torch.int64, device='cpu') rnn_state_ptr = torch.tensor( [self.buffer[f'present_rnn_state_{i}'].data_ptr()], dtype=torch.int64, device='cpu') self.buffer[f'conv_state_ptr_{i}'] = conv_state_ptr self.buffer[f'rnn_state_ptr_{i}'] = rnn_state_ptr if self.use_lora_plugin and self.lora_manager is not None: lora_uids = lora_uids or ["-1"] self.buffer.update( self.lora_manager.input_buffers( lora_uids, self.mapping, self._model_config.num_layers, )) if self.is_medusa_mode: self.buffer[ 'spec_decoding_packed_mask'] = self.spec_decoding_packed_mask self.buffer[ 'spec_decoding_position_offsets'] = self.spec_decoding_position_offsets self.buffer[ 'spec_decoding_generation_lengths'] = self.spec_decoding_generation_lengths self.buffer_allocated = True if self.is_medusa_mode: return self.num_draft_tokens
def _allocate_empty_kv_cache_pools(self, kv_cache_type, num_blocks): # Layers are homogeneous, use old kv cache shape unique_cache_pools = [] if self._model_config.num_kv_heads_per_layer is None: cache_shape = ( num_blocks, self.num_attn_layers, 2, self.get_num_heads_kv(), self.tokens_per_block, self.head_size, ) unique_cache_pools.append( torch.empty(cache_shape, dtype=kv_cache_type, device=self.device)) # Layers are not homogeneous, use new kv cache shape else: kv_heads_unique_counter = Counter( self._model_config.num_kv_heads_per_layer) for kv_head, num_layers in kv_heads_unique_counter.items(): cache_shape = ( num_blocks, num_layers, 2, kv_head, self.tokens_per_block, self.head_size, ) unique_cache_pools.append( torch.empty(cache_shape, dtype=kv_cache_type, device=self.device)) return unique_cache_pools def _get_context_shape_buffer( self, input_ids: torch.Tensor, context_lengths: torch.Tensor, host_context_lengths: torch.Tensor, position_ids: torch.Tensor, last_token_ids: torch.Tensor, attention_mask: torch.Tensor, cross_attention_mask: torch.Tensor, cache_indirection: torch.Tensor, kv_cache_block_offsets: torch.Tensor, host_kv_cache_block_offsets: torch.Tensor, cross_kv_cache_block_offsets: torch.Tensor = None, host_cross_kv_cache_block_offsets: torch.Tensor = None, hidden_states_input: torch.Tensor = None, prompt_embedding_table: torch.Tensor = None, tasks: torch.Tensor = None, prompt_vocab_size: torch.Tensor = None, encoder_output: torch.Tensor = None, encoder_input_lengths: torch.Tensor = None, host_runtime_perf_knobs: torch.Tensor = None, ) -> Dict[str, RuntimeTensor]: tensors = {} def sym(x, name): return RuntimeTensor.from_torch(name, x) def add_tensor(x, name): return tensors.update({name: sym(x, name)}) def add_tensor_with_shape(x, name, shape): return tensors.update( {name: RuntimeTensor.from_torch(name, x, override_shape=shape)}) def add_tensor_with_bs(x, name, bs): # this assumes dim0 to be bs and only overrides dim0 with given bs shape = list(x.shape) shape[0] = bs return tensors.update( {name: RuntimeTensor.from_torch(name, x, override_shape=shape)}) if self.has_attn_layers: if self.use_gpt_attention_plugin: add_tensor(context_lengths, 'context_lengths') assert host_runtime_perf_knobs != None, "gpt_attention_plugin needs to set host_runtime_perf_knobs" add_tensor(host_runtime_perf_knobs, 'host_runtime_perf_knobs') add_tensor(cache_indirection, 'cache_indirection') if self.has_position_embedding: add_tensor(position_ids, 'position_ids') if self.cross_attention: # in context phase, need to generate cross kv cache, set to True add_tensor(torch.ones(1, dtype=torch.bool, device=self.device), 'cross_kv_cache_gen') if self.skip_cross_qkv: if self.cross_qkv_reuse is None: # see Attention's self.qkv output dim cross_qkv_out_dim = self.num_heads * self.head_size + ( 2 * self.get_num_heads_kv() * self.head_size) cross_qkv_shape = encoder_output.shape[:-1] + ( cross_qkv_out_dim, ) cross_qkv_reuse = torch.empty(cross_qkv_shape, dtype=encoder_output.dtype, device=encoder_output.device) self.cross_qkv_reuse = cross_qkv_reuse add_tensor(self.cross_qkv_reuse, 'cross_qkv_reuse') add_tensor(encoder_output, 'encoder_output') add_tensor(encoder_input_lengths, 'encoder_input_lengths') add_tensor(self.buffer['encoder_max_input_length'], 'encoder_max_input_length') if not self.use_gpt_attention_plugin: add_tensor(cross_attention_mask, 'cross_attention_mask') if self.mapping.has_pp(): hidden_size = self.hidden_size * self.mapping.tp_size if input_ids.dim() == 2: hidden_states_input = hidden_states_input.resize_( input_ids.shape[0], input_ids.shape[1], hidden_size) else: hidden_states_input = hidden_states_input.resize_( input_ids.shape[0], hidden_size) if self.mapping.is_last_pp_rank(): if self.is_redrafter_mode: set_redrafter_ctx_tensors(self, add_tensor, add_tensor_with_bs) add_tensor(self.buffer['logits'], 'logits') if self.is_medusa_mode: add_tensor(self.buffer['medusa_logits'], 'medusa_logits') if not self.gather_context_logits or self.has_rnn_layers: add_tensor(last_token_ids, 'last_token_ids') else: add_tensor(hidden_states_input, 'hidden_states_output') if self.mapping.is_first_pp_rank(): add_tensor(input_ids, 'input_ids') else: add_tensor(hidden_states_input, 'hidden_states_input') if prompt_embedding_table is not None: add_tensor(prompt_embedding_table, 'prompt_embedding_table') if self.remove_input_padding: tasks_generation = torch.concat([ torch.full([context_lengths[b].item()], tasks[b].item(), dtype=torch.int32) for b in range(context_lengths.size(0)) ]).cuda() else: tasks_generation = tasks.unsqueeze(-1) add_tensor(tasks_generation, 'tasks') add_tensor(prompt_vocab_size, 'prompt_vocab_size') if self.paged_kv_cache and self.has_attn_layers: buffer = kv_cache_block_offsets.contiguous() shape = kv_cache_block_offsets.shape shape = [shape[0], shape[1] * shape[2], *shape[3:]] add_tensor_with_shape(buffer, f'kv_cache_block_offsets', shape) add_tensor_with_shape(host_kv_cache_block_offsets, f'host_kv_cache_block_offsets', shape) pool_pointers = f'host_kv_cache_pool_pointers' pool_mapping = f'host_kv_cache_pool_mapping' add_tensor(self.buffer[pool_pointers], pool_pointers) add_tensor(self.buffer[pool_mapping], pool_mapping) if self.cross_attention: cross_buffer = cross_kv_cache_block_offsets.contiguous() cross_shape = cross_kv_cache_block_offsets.shape cross_shape = [ cross_shape[0], cross_shape[1] * cross_shape[2], *cross_shape[3:] ] add_tensor_with_shape(cross_buffer, f'cross_kv_cache_block_offsets', cross_shape) add_tensor_with_shape(host_cross_kv_cache_block_offsets, f'host_cross_kv_cache_block_offsets', cross_shape) cross_pool_pointers = f'host_cross_kv_cache_pool_pointers' cross_pool_mapping = f'host_cross_kv_cache_pool_mapping' add_tensor(self.buffer[cross_pool_pointers], cross_pool_pointers) add_tensor(self.buffer[cross_pool_mapping], cross_pool_mapping) batch_size = context_lengths.shape[0] if self.use_kv_cache and not self.paged_kv_cache: for idx in range(self.first_layer, self.last_layer): if not self.use_gpt_attention_plugin and self.layer_types[ idx] == 'attention': kv_cache_shape = (batch_size, 2, self.get_num_heads_kv( self.general_to_attn_idx[idx]), 0, self.head_size) # for empty tensor, TRT does not really use the tensor data, so any dtype is fine kv_cache_buffer = torch.zeros((1, ), dtype=torch.float32, device=self.device) add_tensor_with_shape(kv_cache_buffer, f'past_key_value_{idx}', kv_cache_shape) present = f'present_key_value_{idx}' add_tensor(self.buffer[present], present) if self.cross_attention: cross_kv_cache_shape = (batch_size, 2, self.get_num_heads_kv(), 0, self.head_size) # for empty tensor, TRT does not really use the tensor data, so any dtype is fine cross_kv_cache_buffer = torch.zeros((1, ), dtype=torch.float32, device=self.device) add_tensor_with_shape(cross_kv_cache_buffer, f'cross_past_key_value_{idx}', cross_kv_cache_shape) cross_present = f'cross_present_key_value_{idx}' add_tensor(self.buffer[cross_present], cross_present) elif self.layer_types[idx] == 'attention': key_value_cache = self.buffer[f'present_key_value_{idx}'] # when plugin is used, past_ket_value tensor does not need to be empty tensor # because plugin does not care, and does not use this shape. add_tensor(key_value_cache, f'past_key_value_{idx}') add_tensor(key_value_cache, f'present_key_value_{idx}') if self.cross_attention: cross_cache_buffer = self.buffer[ f'cross_present_key_value_{idx}'] add_tensor(cross_cache_buffer, f'cross_past_key_value_{idx}') add_tensor(cross_cache_buffer, f'cross_present_key_value_{idx}') for idx in range(self.first_layer, self.last_layer): if self.layer_types[idx] != 'recurrent': continue if self.paged_state: add_tensor(self.buffer[f'conv_state_ptr_{idx}'], f'conv_state_ptr_{idx}') add_tensor(self.buffer[f'rnn_state_ptr_{idx}'], f'rnn_state_ptr_{idx}') else: # conv state dtype = self._tensor_dtype(f'present_conv_state_{idx}') if self.use_mamba_conv1d_plugin: conv_state_shape = (batch_size, self.conv_kernel - 1, self.rnn_conv_dim_size) else: conv_state_shape = (batch_size, self.rnn_conv_dim_size, self.conv_kernel - 1) conv_state = torch.zeros(conv_state_shape, dtype=dtype, device=self.device) add_tensor(conv_state, f'past_conv_state_{idx}') present = f'present_conv_state_{idx}' add_tensor(self.buffer[present], present) # rnn state rnn_state = self.buffer[f'present_rnn_state_{idx}'] add_tensor(rnn_state, f'past_rnn_state_{idx}') add_tensor(rnn_state, f'present_rnn_state_{idx}') if self.paged_state and self.has_rnn_layers: slot_mapping = torch.arange(0, batch_size, device='cuda', dtype=torch.int32) add_tensor(slot_mapping, 'slot_mapping') if self.use_gpt_attention_plugin and self.has_attn_layers: # context request host_request_types = torch.zeros_like(context_lengths, device='cpu').int() self.sequence_length_buffer = context_lengths.detach().clone() if self.is_redrafter_mode: device_request_types = torch.zeros_like( context_lengths, device=self.device).int() add_tensor(device_request_types, 'device_request_types') add_tensor_with_shape(self.sequence_length_buffer, 'sequence_length', (batch_size, )) # field 0: past_key_value_length, field 1: is_context (deprecated). changed to [0], otherwise affects batch padded input mode add_tensor_with_shape(host_context_lengths.clone(), 'host_past_key_value_lengths', (batch_size, )) add_tensor_with_shape(self.host_sink_token_length, 'host_sink_token_length', (1, )) add_tensor(host_request_types, 'host_request_types') add_tensor_with_shape(self.host_max_attention_window_sizes, f'host_max_attention_window_sizes', (self.num_attn_layers, )) if self.remove_input_padding: add_tensor(host_context_lengths, 'host_context_lengths') else: if self.has_rnn_layers: host_request_types = torch.zeros_like(context_lengths, device='cpu').int() add_tensor(host_request_types, 'host_request_types') if self.remove_input_padding: add_tensor(host_context_lengths, 'host_context_lengths') if self.has_attn_layers: add_tensor(attention_mask, 'attention_mask') if self.mapping.tp_size > 1: add_tensor(self.all_reduce_workspace, 'all_reduce_workspace') if self.use_lora_plugin: for idx in range(self.num_layers): for lora_module in (self.lora_target_modules + self.missing_qkv_modules): layer_idx = idx + self.first_layer lora_ranks = f'{lora_module}_lora_ranks_{layer_idx}' add_tensor(self.buffer[lora_ranks], lora_ranks) lora_weights = f'{lora_module}_lora_weights_pointers_{layer_idx}' add_tensor(self.buffer[lora_weights], lora_weights) if self.cross_attention and self.remove_input_padding: add_tensor(encoder_input_lengths.to('cpu'), 'host_encoder_input_lengths') if self.is_medusa_mode: # Medusa mask and position offsets are fixed for the whole session. add_tensor(self.buffer['spec_decoding_packed_mask'], 'spec_decoding_packed_mask') add_tensor(self.buffer['spec_decoding_position_offsets'], 'spec_decoding_position_offsets') add_tensor(self.buffer['spec_decoding_generation_lengths'], 'spec_decoding_generation_lengths') return tensors def _get_next_step_shape_buffer( self, batch_size: int, beam_width: int, max_context_length: int, step: int, context_lengths: torch.Tensor, host_context_lengths: torch.Tensor, position_ids: torch.Tensor, last_token_ids: torch.Tensor, attention_mask: torch.Tensor, cross_attention_mask: torch.Tensor, cache_indirection: torch.Tensor, kv_cache_block_offsets: torch.Tensor, host_kv_cache_block_offsets: torch.Tensor, cross_kv_cache_block_offsets: torch.Tensor = None, host_cross_kv_cache_block_offsets: torch.Tensor = None, hidden_states_input: torch.Tensor = None, prompt_embedding_table: torch.Tensor = None, tasks: torch.Tensor = None, prompt_vocab_size: torch.Tensor = None, encoder_output: torch.Tensor = None, encoder_input_lengths: torch.Tensor = None, host_runtime_perf_knobs: torch.Tensor = None): torch.cuda.nvtx.range_push("_get_next_step_shape_buffer") tensors = {} # Dict[str, RuntimeTensor] def sym(x, name): return RuntimeTensor.from_torch(name, x) def add_tensor(x, name): return tensors.update({name: sym(x, name)}) def add_tensor_with_shape(x, name, shape): return tensors.update( {name: RuntimeTensor.from_torch(name, x, override_shape=shape)}) context_lengths_local = context_lengths.clone() host_context_lengths_local = host_context_lengths.clone() if self.has_attn_layers: if self.use_gpt_attention_plugin: add_tensor(context_lengths_local, 'context_lengths') assert host_runtime_perf_knobs != None, "gpt_attention_plugin needs to set host_runtime_perf_knobs" add_tensor(host_runtime_perf_knobs, 'host_runtime_perf_knobs') add_tensor(cache_indirection, 'cache_indirection') if self.has_position_embedding: add_tensor(position_ids, 'position_ids') if self.mapping.has_pp(): hidden_size = self.hidden_size * self.mapping.tp_size shape = (batch_size * beam_width, hidden_size) if self.remove_input_padding else ( batch_size * beam_width, 1, hidden_size) hidden_states_input = hidden_states_input.resize_(*shape) if self.mapping.is_last_pp_rank(): add_tensor(self.buffer['logits'], 'logits') if self.is_medusa_mode: add_tensor(self.buffer['medusa_logits'], 'medusa_logits') if not self.gather_context_logits or self.has_rnn_layers: add_tensor(last_token_ids, 'last_token_ids') else: add_tensor(hidden_states_input, 'hidden_states_output') if self.mapping.is_first_pp_rank(): if self.is_redrafter_mode: input_ids_shape = (self.host_total_gen_token, ) else: input_ids_shape = ( batch_size * beam_width * (self.num_draft_tokens + 1), ) if self.remove_input_padding else (batch_size * beam_width, self.num_draft_tokens + 1) if self.is_redrafter_mode: add_tensor_with_shape(self.buffer['flat_tokens'], 'input_ids', input_ids_shape) elif self.is_medusa_mode: add_tensor_with_shape(self.generation_input_ids, 'input_ids', input_ids_shape) else: add_tensor_with_shape(self.new_tokens, 'input_ids', input_ids_shape) else: add_tensor(hidden_states_input, 'hidden_states_input') if self.cross_attention: if self.use_gpt_attention_plugin: # disable (or minimize) cross qkv computation at generation phase if self.skip_cross_qkv: # disable encoder_output_shape = encoder_output.shape add_tensor(self.cross_qkv_reuse, 'cross_qkv_reuse') else: # minimize # use TensorRT Empty Tensor to skip redundant computation # 0 for generation phase, >0 for context phase encoder_output_shape = [ 0, encoder_output.shape[-1] ] if self.remove_input_padding else [ 1, 0, encoder_output.shape[-1] ] else: # OOTB path doesn't have kv cache for now, so this encoder_output is # a must-have input. We just use the encoder_output encoder_output_shape = encoder_output.shape # in generation phase, cross kv cache is already filled during context phase, set to False add_tensor(torch.zeros(1, dtype=torch.bool, device=self.device), 'cross_kv_cache_gen') add_tensor_with_shape(encoder_output, 'encoder_output', encoder_output_shape) add_tensor(encoder_input_lengths, 'encoder_input_lengths') add_tensor(self.buffer['encoder_max_input_length'], 'encoder_max_input_length') if not self.use_gpt_attention_plugin: add_tensor(cross_attention_mask, 'cross_attention_mask') if self.paged_kv_cache and self.has_attn_layers: shape = kv_cache_block_offsets.shape shape = [shape[0], shape[1] * shape[2], *shape[3:]] add_tensor_with_shape(kv_cache_block_offsets, f'kv_cache_block_offsets', shape) add_tensor_with_shape(host_kv_cache_block_offsets, f'host_kv_cache_block_offsets', shape) pool_pointers = f'host_kv_cache_pool_pointers' pool_mapping = f'host_kv_cache_pool_mapping' add_tensor(self.buffer[pool_pointers], pool_pointers) add_tensor(self.buffer[pool_mapping], pool_mapping) if self.cross_attention: cross_shape = cross_kv_cache_block_offsets.shape cross_shape = [ cross_shape[0], cross_shape[1] * cross_shape[2], *cross_shape[3:] ] add_tensor_with_shape(cross_kv_cache_block_offsets, f'cross_kv_cache_block_offsets', cross_shape) add_tensor_with_shape(host_cross_kv_cache_block_offsets, f'host_cross_kv_cache_block_offsets', cross_shape) cross_pool_pointers = f'host_cross_kv_cache_pool_pointers' cross_pool_mapping = f'host_cross_kv_cache_pool_mapping' add_tensor(self.buffer[cross_pool_pointers], cross_pool_pointers) add_tensor(self.buffer[cross_pool_mapping], cross_pool_mapping) if prompt_embedding_table is not None: add_tensor(prompt_embedding_table, 'prompt_embedding_table') if self.remove_input_padding: gen_tasks = tasks else: gen_tasks = tasks.unsqueeze(-1) add_tensor(gen_tasks, 'tasks') add_tensor(prompt_vocab_size, 'prompt_vocab_size') if not self.paged_kv_cache: for attn_idx, layer_idx in self.attn_to_general_idx.items(): if not self.use_gpt_attention_plugin: next_shape = (batch_size * beam_width, 2, self.get_num_heads_kv(), max_context_length + step, self.head_size) # We will make current layer's output KV-cache overwrite previous layers input KV-cache # buffer id: ... 5, 6, 7, 8, 9, ... # layer n: out in # layer n+1: out in # layer n+2 out in # And when finish a step, we will make every layer's in/out buffer index subtract 1 in # a circular buffer way to make sure current outputs become next step's inputs. num_buffers = self.num_attn_layers + 1 input_idx = (attn_idx - (step % num_buffers)) % num_buffers output_idx = (input_idx - 1) % num_buffers input_name = self.kv_cache_buffer_names[input_idx] output_name = self.kv_cache_buffer_names[output_idx] add_tensor_with_shape(self.buffer[input_name], f'past_key_value_{layer_idx}', next_shape) add_tensor(self.buffer[output_name], f'present_key_value_{layer_idx}') else: key_value_cache = self.buffer[ f'present_key_value_{layer_idx}'] add_tensor(key_value_cache, f'past_key_value_{layer_idx}') add_tensor(key_value_cache, f'present_key_value_{layer_idx}') if self.cross_attention: cross_cache_buffer = self.buffer[ f'cross_present_key_value_{layer_idx}'] add_tensor(cross_cache_buffer, f'cross_past_key_value_{layer_idx}') add_tensor(cross_cache_buffer, f'cross_present_key_value_{layer_idx}') for idx in range(self.first_layer, self.last_layer): if self.layer_types[idx] != 'recurrent': continue if self.paged_state: add_tensor(self.buffer[f'conv_state_ptr_{idx}'], f'conv_state_ptr_{idx}') add_tensor(self.buffer[f'rnn_state_ptr_{idx}'], f'rnn_state_ptr_{idx}') else: # conv state if self.use_mamba_conv1d_plugin: conv_state_shape = (batch_size, self.conv_kernel - 1, self.rnn_conv_dim_size) else: conv_state_shape = (batch_size, self.rnn_conv_dim_size, self.conv_kernel - 1) if step % 2: add_tensor_with_shape( self.buffer[f'1_present_conv_state_{idx}'], f'past_conv_state_{idx}', conv_state_shape) add_tensor(self.buffer[f'present_conv_state_{idx}'], f'present_conv_state_{idx}') else: add_tensor_with_shape( self.buffer[f'present_conv_state_{idx}'], f'past_conv_state_{idx}', conv_state_shape) add_tensor(self.buffer[f'1_present_conv_state_{idx}'], f'present_conv_state_{idx}') # rnn state rnn_state = self.buffer[f'present_rnn_state_{idx}'] add_tensor(rnn_state, f'past_rnn_state_{idx}') add_tensor(rnn_state, f'present_rnn_state_{idx}') if self.paged_state and self.has_rnn_layers: slot_mapping = torch.arange(0, batch_size, device='cuda', dtype=torch.int32) add_tensor(slot_mapping, 'slot_mapping') if self.use_gpt_attention_plugin and self.has_attn_layers: # generation requests host_request_types = torch.ones_like(context_lengths, device='cpu').int() if self.is_redrafter_mode: torch.cuda.nvtx.range_push("device_request_types") device_request_types = torch.ones_like( context_lengths, device=self.device).int() add_tensor(device_request_types, 'device_request_types') torch.cuda.nvtx.range_pop() if self.is_medusa_mode or self.is_redrafter_mode: host_past_key_value_lengths = self.sequence_length_buffer.cpu() else: # previous [past_kv_length, is_context] has been deprecated. only past_kv_length should be given here # Note we should use max_context_length here to align to max -- but isn't this done in attn plugin's max_element() already? host_past_key_value_lengths = torch.tensor( [max_context_length + step] * (batch_size * beam_width), dtype=torch.int32, device='cpu') add_tensor(host_past_key_value_lengths, 'host_past_key_value_lengths') add_tensor(host_request_types, 'host_request_types') # Sequence lengths are not used in the context phase actually. sequence_length = self.sequence_length_buffer add_tensor_with_shape(sequence_length, 'sequence_length', (batch_size * beam_width, )) add_tensor_with_shape(self.host_sink_token_length, 'host_sink_token_length', (1, )) add_tensor_with_shape(self.host_max_attention_window_sizes, f'host_max_attention_window_sizes', (self.num_attn_layers, )) if self.remove_input_padding: add_tensor(host_context_lengths_local, 'host_context_lengths') else: if self.has_rnn_layers: host_request_types = torch.ones_like(context_lengths, device='cpu').int() add_tensor(host_request_types, 'host_request_types') if self.remove_input_padding: add_tensor(host_context_lengths_local, 'host_context_lengths') if self.has_attn_layers: add_tensor(attention_mask, 'attention_mask') if self.mapping.tp_size > 1: add_tensor(self.all_reduce_workspace, 'all_reduce_workspace') # Since we are using a ping-pong context design and the lora weight remains constant within the same request, # it is only necessary to set the lora weight for the first two steps. if self.use_lora_plugin and step < 2: for idx in range(self.num_layers): layer_idx = idx + self.first_layer for lora_module in (self.lora_target_modules + self.missing_qkv_modules): lora_ranks = f'{lora_module}_lora_ranks_{layer_idx}' add_tensor(self.buffer[lora_ranks], lora_ranks) lora_module = f'{lora_module}_lora_weights_pointers_{layer_idx}' add_tensor(self.buffer[lora_module], lora_module) if self.cross_attention and self.remove_input_padding: add_tensor(encoder_input_lengths.to('cpu'), 'host_encoder_input_lengths') if self.is_medusa_mode: # Spec Decoding mask and position offsets are fixed for the whole session for Medusa. add_tensor(self.buffer['spec_decoding_packed_mask'], 'spec_decoding_packed_mask') add_tensor(self.buffer['spec_decoding_position_offsets'], 'spec_decoding_position_offsets') add_tensor(self.buffer['spec_decoding_generation_lengths'], 'spec_decoding_generation_lengths') if self.is_redrafter_mode: set_redrafter_gen_tensors(self, batch_size, add_tensor, add_tensor_with_shape) torch.cuda.nvtx.range_pop() return tensors def _prepare_context_inputs(self, batch_size, context_lengths, host_context_lengths, use_gpt_attention_plugin, remove_input_padding, **kwargs): last_token_ids = context_lengths.detach().clone() if (self.is_medusa_mode or self.is_redrafter_mode) and not remove_input_padding: # For Medusa, last_token_ids should contain the actual indices last_token_ids = last_token_ids - 1 # sub 1 from context_lengths for indices last_token_ids = last_token_ids.reshape([batch_size, -1]) if (use_gpt_attention_plugin or self.has_rnn_layers) and remove_input_padding: last_token_ids = torch.cumsum(last_token_ids, dim=0).int() ret = {'last_token_ids': last_token_ids} if use_gpt_attention_plugin: max_context_length = kwargs.pop('max_context_length') if remove_input_padding: position_ids = torch.concat([ torch.arange(0, host_context_lengths[i], dtype=torch.int32, device='cuda') for i in range(batch_size) ]) else: position_ids = torch.tensor(range(max_context_length), dtype=torch.int32, device='cuda').reshape( [1, -1]).expand([batch_size, -1]) perf_knob_tensor_size = 16 context_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size, dtype=torch.int64) if self.multi_block_mode: context_runtime_perf_knobs[0] = 1 # multi_block_mode if self.enable_context_fmha_fp32_acc: context_runtime_perf_knobs[ 1] = 1 # enable_context_fmha_fp32_acc ret['host_runtime_perf_knobs'] = context_runtime_perf_knobs else: if self.has_attn_layers: input_ids = kwargs.pop('input_ids') pad_id = kwargs.pop('pad_id', None) attention_mask = _prepare_attention_mask(input_ids, pad_id) position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) position_ids = position_ids.int() ret['attention_mask'] = attention_mask if self.has_position_embedding and self.has_attn_layers: ret['position_ids'] = position_ids if self.is_redrafter_mode: self.buffer['position_ids_base'] = context_lengths.clone() # NOTE: Generate random tensors using torch redrafter_prepare_random_tensors(self, batch_size, initialize=True) return ret def _prepare_generation_inputs(self, batch_size, context_lengths, use_gpt_attention_plugin, remove_input_padding, **kwargs): torch.cuda.nvtx.range_push("_prepare_generation_inputs") step = kwargs.pop('step') last_token_ids = torch.ones_like(context_lengths) if use_gpt_attention_plugin and (self.is_medusa_mode or self.is_redrafter_mode): if remove_input_padding: if self.is_medusa_mode: # For Medusa, last_token_ids should be [bs * seq] and should contain the actual indices (starts from 1) last_token_ids = torch.ones(batch_size * (self.num_draft_tokens + 1), dtype=torch.int32, device=context_lengths.device) elif self.is_redrafter_mode: torch.cuda.nvtx.range_push("last_token_ids_1s") # update last_token_ids here (buffers already swapped) last_token_ids = torch.ones(self.host_total_gen_token, dtype=torch.int32, device=context_lengths.device) torch.cuda.nvtx.range_pop() else: # For Medusa, last_token_ids should be [bs, seq] and should contain the actual indices (starts from 0) last_token_ids = torch.arange(self.num_draft_tokens + 1, dtype=torch.int32, device=context_lengths.device) last_token_ids = last_token_ids.expand([batch_size, -1]) if (use_gpt_attention_plugin or self.has_rnn_layers) and remove_input_padding: torch.cuda.nvtx.range_push("last_token_ids_cumsum") last_token_ids = torch.cumsum(last_token_ids, dim=0).int() torch.cuda.nvtx.range_pop() ret = {'last_token_ids': last_token_ids} if use_gpt_attention_plugin: if self.is_redrafter_mode: torch.cuda.nvtx.range_push("position_ids_update") # set position_ids # buffers are swapped but sequence_length is not updated at this point if step != 0: self.buffer['position_ids_base'] += self.buffer[ 'num_accepted_tokens'] position_ids = self.buffer['packed_position_ids'].view( -1)[:self.host_total_gen_token] if step == 0: position_ids -= 1 torch.cuda.nvtx.range_pop() else: position_ids = context_lengths + step if not remove_input_padding: position_ids = torch.unsqueeze(position_ids, 1) perf_knob_tensor_size = 16 gen_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size, dtype=torch.int64) if self.multi_block_mode: gen_runtime_perf_knobs[0] = 1 # multi_block_mode if self.enable_context_fmha_fp32_acc: gen_runtime_perf_knobs[1] = 1 # enable_context_fmha_fp32_acc ret['host_runtime_perf_knobs'] = gen_runtime_perf_knobs elif self.has_attn_layers: attention_mask = kwargs.pop('attention_mask') num_beams = kwargs.pop('num_beams') attention_mask = torch.cat((attention_mask, attention_mask.new_ones( (batch_size * num_beams, 1))), dim=-1).contiguous() position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) position_ids = position_ids[:, -1].unsqueeze(-1) position_ids = position_ids.int() ret['attention_mask'] = attention_mask if self.has_position_embedding and self.has_attn_layers: ret['position_ids'] = position_ids if self.is_redrafter_mode: # buffers are already swapped # convert spec_decoding_mask to spec_decoding_packed_mask redrafter_convert_spec_decoding_mask_to_packed_mask( self, self.buffer['spec_decoding_generation_lengths']) # NOTE: Generate random tensors using torch redrafter_prepare_random_tensors(self, batch_size) torch.cuda.nvtx.range_pop() return ret
[docs] def pp_communicate_new_tokens(self, should_stop, cache_indir, sequence_length): if self.mapping.is_last_pp_rank(): for pg in self.mapping.pp_group: if pg == self.mapping.rank: continue should_stop = should_stop.to(self.device) self.nccl_comm.send(should_stop, pg) self.nccl_comm.send(cache_indir, pg) self.nccl_comm.send(sequence_length, pg) self.nccl_comm.send(self.new_tokens, self.mapping.pp_group[0]) else: should_stop = torch.zeros(1, dtype=torch.bool, device=self.device) self.nccl_comm.recv(should_stop, self.mapping.pp_group[-1]) self.nccl_comm.recv(cache_indir, self.mapping.pp_group[-1]) self.nccl_comm.recv(sequence_length, self.mapping.pp_group[-1]) if self.mapping.is_first_pp_rank(): self.nccl_comm.recv(self.new_tokens, self.mapping.pp_group[-1]) return should_stop
[docs] def pp_communicate_final_output_ids(self, final_output_ids, batch_size, beam_width): if self.mapping.is_last_pp_rank(): self.nccl_comm.send(final_output_ids, self.mapping.pp_group[0]) elif self.mapping.is_first_pp_rank(): final_output_ids = torch.zeros( (batch_size, beam_width, self.max_seq_length), dtype=torch.int32, device=self.device) self.nccl_comm.recv(final_output_ids, self.mapping.pp_group[-1]) return final_output_ids
[docs] def finalize_decoder(self, context_lengths, batch_size, beam_width, scfg, in_progress=False): final_output_ids = None if self.mapping.is_last_pp_rank(): # output shape of self.gather_tree: [batch_size, beam_width, output_len] beam_hyps_args = [ self.beam_hyps_output_ids_cba, self.beam_hyps_seq_len_cba, self.beam_hyps_cum_log_probs_cba, self.beam_hyps_normed_scores_cba, self.beam_hyps_log_probs_cba, self.beam_hyps_min_normed_scores, self.beam_hyps_num_beams, self.beam_hyps_is_done ] if scfg.use_beam_hyps and in_progress: # self.gather_tree modifies these args. # In streaming mode, this results in incorrect decoding in the following steps. beam_hyps_args = copy.deepcopy(beam_hyps_args) final_output_ids = self.gather_tree( self.sequence_length_buffer, self.output_ids, self.parent_ids, self.end_ids, context_lengths, self.cum_log_probs, self.log_probs, self.log_probs_tiled, *beam_hyps_args, self.finished, self.length_penalty, batch_size, beam_width, self.max_seq_length, scfg.use_beam_hyps) # Communicate ranks in Pipeline Parallelism if self.mapping.has_pp(): final_output_ids = self.pp_communicate_final_output_ids( final_output_ids, batch_size, beam_width) return final_output_ids
[docs] def find_best_medusa_path(self, batch_size, input_ids: torch.Tensor, next_logits, temp=0): assert input_ids.shape[-1] == self.num_draft_tokens + 1 best_path = [0] * batch_size best_path_len = [1] * batch_size next_tokens = [None] * batch_size zero_pad = torch.zeros((batch_size, 1), dtype=input_ids.dtype, device=input_ids.device) input_ids = torch.cat((input_ids, zero_pad), dim=-1) if temp == 0: new_tokens_raw = torch.argmax( next_logits, dim=-1 ) # TODO: can be done by treating [bs, nT, vocab] as [bs*nT, vocab] and using decoderOp? new_tokens = torch.cat((new_tokens_raw, zero_pad), dim=-1) input_paths = [ input_ids[b, self.medusa_paths] for b in range(batch_size) ] new_paths = [ new_tokens[b, self.medusa_paths] for b in range(batch_size) ] for b in range(batch_size): equality = input_paths[b][:, 1:] == new_paths[b][:, :-1] paths_correct_len = torch.cumprod(equality.int(), dim=1).sum(dim=1) best_path_len[b] = paths_correct_len.max().item() + 1 if best_path_len[b] > 1: best_path[b] = torch.argmax(paths_correct_len) next_tokens[b] = new_paths[b][ best_path[b]][:best_path_len[b]].clone() return best_path, best_path_len, next_tokens
[docs] def filter_medusa_logits(self, batch_size, best_path, best_path_lengths, medusa_logits): """ medusa_logits is of shape [nMH, bs, nMT+1, vocab] Returns [nMH, bs, vocab] """ filtered_logits = torch.empty( (self.num_medusa_heads, batch_size, self.vocab_size_padded), dtype=medusa_logits.dtype, device=medusa_logits.device) medusa_logits = medusa_logits.view(self.num_medusa_heads, batch_size, self.num_draft_tokens + 1, -1) for b in range(batch_size): idx = self.medusa_paths[best_path[b], best_path_lengths[b] - 1] filtered_logits[:, b, ...] = medusa_logits[:, b, idx, ...] return filtered_logits
[docs] def get_next_medusa_tokens(self, batch_size, next_medusa_logits): next_medusa_tokens = [ torch.zeros((batch_size, 1), dtype=torch.int32, device=next_medusa_logits.device) ] # dummy token for now, TODO: update tree_ids and remove this for i in range(self.num_medusa_heads): medusa_token = torch.topk(next_medusa_logits[i, :, :], self.medusa_topks[i], dim=-1).indices next_medusa_tokens.append(medusa_token) next_medusa_tokens = torch.cat(next_medusa_tokens, dim=-1) return next_medusa_tokens
[docs] def locate_accepted_draft_tokens(self, batch_size, best_path, best_path_len, draft_paths): torch.cuda.nvtx.range_push("locate_accepted_draft_tokens") best_path_len_tensor = best_path_len if isinstance( best_path_len, torch.Tensor) else torch.tensor( best_path_len, dtype=torch.int, device='cuda') accepted_draft_token_counts = torch.maximum( best_path_len_tensor - 1, torch.tensor([0], device=best_path_len_tensor.device)) accepted_draft_token_offsets = torch.zeros(batch_size + 1, dtype=torch.int32, device='cuda') accepted_draft_token_offsets[1:] = torch.cumsum( accepted_draft_token_counts, dim=0) accepted_draft_token_offsets_cpu = accepted_draft_token_offsets.to( 'cpu') packed_accepted_draft_tokens_indices = torch.empty( accepted_draft_token_offsets_cpu[batch_size], dtype=torch.int32, device='cuda') for seq_idx in range(batch_size): cur_draft_paths = draft_paths if self.is_medusa_mode else draft_paths[ seq_idx] seq_start = accepted_draft_token_offsets_cpu[seq_idx] seq_end = accepted_draft_token_offsets_cpu[seq_idx + 1] seq_accepted_draft_count = seq_end - seq_start best_path_idx = best_path[seq_idx].cpu() if isinstance( best_path[seq_idx], torch.Tensor) else best_path[seq_idx] seq_accepted_token_indices = cur_draft_paths[ best_path_idx, 1:1 + seq_accepted_draft_count] packed_accepted_draft_tokens_indices[ seq_start:seq_end] = seq_accepted_token_indices - 1 # print("KV offsets & indices", accepted_draft_token_offsets, # packed_accepted_draft_tokens_indices,) torch.cuda.nvtx.range_pop() return accepted_draft_token_offsets, packed_accepted_draft_tokens_indices
[docs] def update_output_ids_by_offset(self, new_generated_ids, offsets): # output_ids [batch_size, padded_input_length] # new_generated_ids [batch_size, padded_accepted_length] # offsets [batch_size] # FIXME: using fused kernel to update the padded output ids. batch_size = self.output_ids.shape[0] for b in range(batch_size): self.output_ids[b, offsets[b]:( offsets[b] + self.accept_lengths[b] )] = new_generated_ids[b][:self.accept_lengths[b]] return
[docs] def next_medusa_input_ids(self): # self.new_tokens [batch_size, padded_accepted_length] # self.accept_lengths [batch_size] # self.medusa_new_tokens [batch_size, num_draft_tokens] # FIXME: using fused kernel to generate the new medusa input ids. batch_size = self.new_tokens.shape[0] for b in range(batch_size): self.generation_input_ids[b, 0] = self.new_tokens[ b, self.accept_lengths[b] - 1] self.generation_input_ids[b, 1:] = self.medusa_output_tokens[b, :]
# OPTIMIZE: need to optimize this early-stop workflow.
[docs] def early_stop_criteria(self, batch_size, step, should_stop): for b in range(batch_size): if self.medusa_should_stop[b]: self.accept_lengths[b] = 0 continue # output sequence length criteria. prev_total_output_length = self.total_accept_lengths[b] # end id criteria. end_id_mask = self.new_tokens[ b, :self.accept_lengths[b]] == self.end_ids[b] should_stop_with_end_id = torch.any(end_id_mask) self.medusa_should_stop[b] = self.medusa_should_stop[b] or ( prev_total_output_length + self.accept_lengths[b] >= self.max_new_tokens) or should_stop_with_end_id # update accept lengths for the current step. if (prev_total_output_length + self.accept_lengths[b] >= self.max_new_tokens): self.accept_lengths[b] = min( self.max_new_tokens - prev_total_output_length, self.accept_lengths[b]) if should_stop_with_end_id: # get the position of first end_id. end_id_pos = (end_id_mask).nonzero(as_tuple=True)[0] self.accept_lengths[b] = min(end_id_pos[0] + 1, self.accept_lengths[b]) self.total_accept_lengths[b] += self.accept_lengths[b] should_stop[0] = should_stop[0] or (step == self.max_new_tokens - 1) or torch.all( self.medusa_should_stop) return should_stop
[docs] def medusa_decode_and_verify(self, step, batch_size, logits): medusa_logits = self.buffer['medusa_logits'] best_path = None best_path_lengths = None if step == 0: # logits buffer is of shape [bs, medusa_tokens+1, vocab] # but during context phase, we get only [bs, 1, vocab] but contiguous logits = logits.view(-1)[:batch_size * logits.shape[-1]].view( batch_size, -1) next_main_token_logits = logits.to(self.decoder_logits_dtype) next_main_token = torch.argmax(next_main_token_logits, dim=-1, keepdim=True) self.new_tokens = next_main_token # NOTE: only one token's medusa logit will be written in. medusa_logits = medusa_logits.view(self.num_draft_tokens + 1, -1)[0, ...] next_medusa_logits = medusa_logits.reshape( self.num_medusa_heads, batch_size, -1).to(self.decoder_logits_dtype) next_medusa_tokens = self.get_next_medusa_tokens( batch_size, next_medusa_logits) self.medusa_output_tokens = next_medusa_tokens[:, self.medusa_tree_ids[ -self. num_draft_tokens:]] self.accept_lengths = torch.ones([batch_size], dtype=torch.int32, device=self.device) else: next_token_logits = logits.to(self.decoder_logits_dtype) best_path, best_path_lengths, next_main_tokens = self.find_best_medusa_path( batch_size, self.generation_input_ids.view(batch_size, -1), next_token_logits.view(batch_size, self.num_draft_tokens + 1, -1)) self.accept_lengths = torch.tensor(best_path_lengths, device=self.device) self.new_tokens = torch.nested.to_padded_tensor( torch.nested.nested_tensor(next_main_tokens, dtype=torch.int32), self.end_ids[0]) #FIXME end id padding. next_medusa_logits = self.filter_medusa_logits( batch_size, best_path, best_path_lengths, medusa_logits) next_medusa_tokens = self.get_next_medusa_tokens( batch_size, next_medusa_logits) self.medusa_output_tokens = next_medusa_tokens[:, self.medusa_tree_ids[ -self. num_draft_tokens:]] return best_path, best_path_lengths
[docs] def process_logits_including_draft(self, step, batch_size, logits, next_step_buffer): """ 1. Process logits to tokens and validate (Medusa) or process outputs (ReDrafter) 2. Extract early stop criteria here : self.accept_length 3. Update output ids : needs self.new_tokens and past_sequence_length 4. Get next input_ids : self.[new_tokens, accept_lengths, medusa_output_tokens] 5. Update KV cache : self.[sequence_length, num_draft_tokens] 6. Update sequence_length_buffer and past_kv_length """ should_stop = torch.tensor([False], dtype=bool) if self.is_medusa_mode: # NOTE: this function call also updates self.[accept_lengths, new_tokens, medusa_output_tokens] best_path, best_path_lengths = self.medusa_decode_and_verify( step, batch_size, logits) last_draft_paths = self.medusa_paths # print(best_path, self.new_tokens, self.medusa_output_tokens) last_draft_tokens_len = self.num_draft_tokens if step > 0 else 0 cur_draft_tokens_len = self.num_draft_tokens elif self.is_redrafter_mode: # buffers are swapped at this point last_draft_tokens = self.buffer['next_draft_tokens'] new_draft_tokens = self.buffer['draft_tokens'] last_draft_paths = self.buffer["next_draft_indices"] last_draft_tokens_len = self.buffer[ 'next_spec_decoding_generation_lengths'] - 1 if step > 0 else 0 cur_draft_tokens_len = self.buffer[ 'spec_decoding_generation_lengths'] - 1 best_path, best_path_lengths = process_redrafter_outputs( self, step, batch_size, last_draft_tokens, new_draft_tokens) # NOTE: stop criteria torch.cuda.nvtx.range_push("early_stop_check") if step == 0: self.total_accept_lengths = self.accept_lengths.clone() self.medusa_should_stop = torch.eq(self.new_tokens.reshape(-1), self.end_ids) should_stop[0] = torch.equal( self.new_tokens.reshape(-1), self.end_ids) or (step == self.max_new_tokens - 1) else: should_stop = self.early_stop_criteria(batch_size, step, should_stop) torch.cuda.nvtx.range_pop() # NOTE: self.accept_lengths are the lengths of accepted tokens in the current step # NOTE: self.sequence_length_buffer = num_past_kv_cache (accepted) + accept_lengths torch.cuda.nvtx.range_push("update_output_ids") self.update_output_ids_by_offset( self.new_tokens, self.sequence_length_buffer - last_draft_tokens_len) torch.cuda.nvtx.range_pop() if step != self.max_new_tokens - 1 and not should_stop.item(): if self.is_medusa_mode: self.next_medusa_input_ids() if step != 0: assert best_path is not None and best_path_lengths is not None accepted_draft_token_offsets, packed_accepted_draft_tokens_indices = self.locate_accepted_draft_tokens( batch_size, best_path, best_path_lengths, last_draft_paths) # update the KV cache torch.cuda.nvtx.range_push("kv_update") self.kv_cache_updater.update( accepted_draft_token_offsets, packed_accepted_draft_tokens_indices, self.sequence_length_buffer, last_draft_tokens_len) torch.cuda.nvtx.range_pop() self.sequence_length_buffer += self.accept_lengths + cur_draft_tokens_len - last_draft_tokens_len else: self.sequence_length_buffer += cur_draft_tokens_len + 1 # NOTE: set the accepted tokens for the last step. if should_stop.item(): # remove num_draft_tokens for next generation. # Runtime: denotes kv cache length start positions. # Output: denotes the length of sequence length (input ids + output ids) self.sequence_length_buffer += self.accept_lengths - last_draft_tokens_len if next_step_buffer is not None: next_step_buffer['host_past_key_value_lengths'].to_torch().copy_( self.sequence_length_buffer) return should_stop
[docs] def handle_per_step( self, cache_indirections: list, step: int, batch_size: int, max_context_length: int, beam_width: int, input_ids: torch.Tensor, hidden_states: torch.Tensor, scfg: SamplingConfig, kv_cache_block_offsets: torch.Tensor, host_kv_cache_block_offsets: torch.Tensor, cross_kv_cache_block_offsets: torch.Tensor, host_cross_kv_cache_block_offsets: torch.Tensor, prompt_embedding_table: torch.Tensor, tasks: torch.Tensor, context_lengths: torch.Tensor, host_context_lengths, attention_mask: torch.Tensor, cross_attention_mask: torch.Tensor, prompt_vocab_size: torch.Tensor, ite: int, sequence_limit_lengths: torch.Tensor, sequence_lengths: torch.Tensor, next_step_tensors: Dict[str, RuntimeTensor], stop_words_data, bad_words_data, encoder_output: torch.Tensor, encoder_input_lengths: torch.Tensor, stopping_criteria: StoppingCriteria, logits_processor: LogitsProcessor, **kwargs): if self.debug_mode: print( f"=================================== STEP {step} ==================================" ) if step % 2: context = self.runtime.context_0 this_src_cache_indirection = cache_indirections[1] this_tgt_cache_indirection = cache_indirections[0] next_src_cache_indirection = cache_indirections[0] else: context = self.runtime.context_1 this_src_cache_indirection = cache_indirections[0] this_tgt_cache_indirection = cache_indirections[1] next_src_cache_indirection = cache_indirections[1] position_ids_raw = kwargs.get('position_ids', None) if step == 0: model_inputs = self._prepare_context_inputs( batch_size=batch_size, context_lengths=context_lengths, host_context_lengths=host_context_lengths, use_gpt_attention_plugin=self.use_gpt_attention_plugin, remove_input_padding=self.remove_input_padding, max_context_length=max_context_length, input_ids=input_ids, pad_id=scfg.pad_id, eos_id=scfg.end_id) if position_ids_raw is None: # default iota position ids position_ids = model_inputs.get('position_ids', None) else: # user input position ids if self.remove_input_padding: position_ids = torch.cat(position_ids_raw, dim=0) else: padded_position_ids = torch.nn.utils.rnn.pad_sequence( position_ids_raw, batch_first=True, padding_value=0) position_ids = padded_position_ids last_token_ids = model_inputs.get('last_token_ids') attention_mask = model_inputs.get('attention_mask', None) context_runtime_perf_knobs = model_inputs.get( 'host_runtime_perf_knobs', None) if self.paged_kv_cache and self.has_attn_layers: host_kv_cache_block_offsets = self.pools_kv_cache_manager.get_block_offsets( beam_width=1) kv_cache_block_offsets = host_kv_cache_block_offsets.to('cuda') if self.cross_attention: host_cross_kv_cache_block_offsets = self.cross_pools_kv_cache_manager.get_block_offsets( beam_width=1) cross_kv_cache_block_offsets = host_cross_kv_cache_block_offsets.to( 'cuda') ctx_tensors = self._get_context_shape_buffer( input_ids, context_lengths, host_context_lengths, position_ids, last_token_ids, attention_mask, cross_attention_mask, this_src_cache_indirection, kv_cache_block_offsets, host_kv_cache_block_offsets, cross_kv_cache_block_offsets, host_cross_kv_cache_block_offsets, hidden_states, prompt_embedding_table, tasks, prompt_vocab_size, encoder_output, encoder_input_lengths, host_runtime_perf_knobs=context_runtime_perf_knobs) context = self.runtime.ctx_context self.runtime._set_tensors(context, ctx_tensors) if self.debug_mode: self.debug_buffer = { name: tensor.to_torch() for name, tensor in ctx_tensors.items() } if self.cuda_graph_mode: # context mode, clean cuda graph instances self.runtime.cuda_graph_instances = [None for _ in range(2)] if self.debug_mode and False: # TODO: after TRT bug is fixed self.runtime._check_tensors(context) # dynamic_decoder currently use torch's current stream, so must let TRT enqueue use same stream here stream = torch.cuda.current_stream().cuda_stream instance_idx = step % 2 if self.cuda_graph_mode and self.runtime.cuda_graph_instances[ instance_idx] is not None: # launch cuda graph CUASSERT( cudart.cudaGraphLaunch( self.runtime.cuda_graph_instances[instance_idx], stream)) ok = True else: ok = self.runtime._run(context, stream) if not ok: raise RuntimeError(f"Executing TRT engine failed step={step}!") # TODO: remove this Windows WAR after https://nvbugs/4460474 is fixed. if platform.system() == "Windows" or self.debug_mode: torch.cuda.synchronize() context_logits = None if self.mapping.is_last_pp_rank(): if step == 0 and self.gather_context_logits: assert not self.is_medusa_mode and not self.is_redrafter_mode context_logits = self.buffer['logits'].detach().clone() # gather last token of context if self.remove_input_padding: # reshape self.buffer['logits'] from [bs, max_context_length, vocab] # to [1, bs * max_context_length, vocab] # Note that the data are put in the buffer without padding although # the allocated buffer has padding. self.buffer['logits'] = self.buffer['logits'].reshape( [1, -1, self.vocab_size_padded]) self.buffer['logits'] = torch.index_select( self.buffer['logits'], 1, last_token_ids - 1).view(batch_size, self.vocab_size_padded) else: last_token_ids = last_token_ids.reshape(batch_size, 1, 1) last_token_ids = last_token_ids.expand( batch_size, 1, self.vocab_size_padded) - 1 self.buffer['logits'] = torch.gather( self.buffer['logits'], dim=1, index=last_token_ids.to(dtype=torch.int64)).view( batch_size, self.vocab_size_padded) if step == 0 and beam_width > 1: assert not self.is_medusa_mode and not self.is_redrafter_mode assert not self.has_rnn_layers # these tiled tensors are returned by handle_per_step(), so they can relay to the next generation calls if not self.use_gpt_attention_plugin: attention_mask = _tile_beam_width(attention_mask, beam_width) context_lengths = _tile_beam_width(context_lengths, beam_width) host_context_lengths = _tile_beam_width(host_context_lengths, beam_width) if encoder_input_lengths is not None: encoder_input_lengths = _tile_beam_width( encoder_input_lengths, beam_width) if tasks is not None: tasks = _tile_beam_width(tasks, beam_width) # Move tiling before logit computing of context if not self.paged_kv_cache: for key in self.buffer: # Note: this tiles both self attn cache and cross attn # cache! both names contain "present_key_value" if "present_key_value" in key: if self.use_gpt_attention_plugin: self.buffer[key] = _tile_beam_width( self.buffer[key], beam_width) else: # In the OOTB path, KV cache should be contiguously # tiled since TRT engine allocates past_kv cache of # length context_length, i.e., we need a buffer of # shape (batch * beam, 2, heads, context_length, head_size). b, _, h, _, d = self.buffer[key].shape numel = 2 * b * h * (max_context_length + step) * d self.buffer[key] = _contiguous_tile_beam_width( self.buffer[key], numel, beam_width) if self.mapping.is_last_pp_rank(): self.buffer['logits'] = _tile_beam_width( self.buffer['logits'], beam_width) generation_logits = None if self.mapping.is_last_pp_rank(): if self.gather_generation_logits: generation_logits = self.buffer['logits'].detach().clone() # Initialize sequence_lengths (no paddings) for the generation phase. if step == 0 and not self.is_medusa_mode and not self.is_redrafter_mode: # Medusa/ReDrafter has its own logic self.sequence_length_buffer = context_lengths.detach().clone() if self.is_redrafter_mode: # to simplify some processing logic, always swap buffers after execution exchange_redrafter_buffers(self) # NOTE: handle next step. if not step == self.max_new_tokens - 1: # Set shape and address for the next step model_inputs = self._prepare_generation_inputs( batch_size=batch_size, context_lengths=context_lengths, use_gpt_attention_plugin=self.use_gpt_attention_plugin, remove_input_padding=self.remove_input_padding, step=step, num_beams=beam_width, attention_mask=attention_mask, ) if position_ids_raw is None: position_ids = model_inputs.get('position_ids', None) else: position_ids = torch.cat( [p[-1:] + step + 1 for p in position_ids_raw], dim=0) if not self.remove_input_padding: position_ids = torch.unsqueeze(position_ids, 1) last_token_ids = model_inputs.get('last_token_ids') attention_mask = model_inputs.get('attention_mask', None) gen_runtime_perf_knobs = model_inputs.get('host_runtime_perf_knobs', None) # Prepare for the next step, and always allocate 1 token slot. if self.paged_kv_cache and self.has_attn_layers: # Iterate to the next step in KV cache manager. # Increase number of tokens for all unfinished sequences. # And allocate new blocks if needed. # We set this to False for all sequences, since we use only length criterion to stop now # OPTIMIZE: find a better of adding multiple tokens for paged kv cache. torch.cuda.nvtx.range_push("paged_kv_alloc") if self.is_redrafter_mode and self.max_draft_tokens > 0: add_token_count = (self.max_draft_tokens + 1) * 2 if step == 0 else torch.max( self.accept_lengths).item() assert add_token_count > 0 for _ in range(add_token_count): self.pools_kv_cache_manager.step([False] * batch_size) if self.is_medusa_mode and self.num_draft_tokens > 0: # Allocate kv cache token slots for next step. # Make sure there are always > (num_draft_tokens + 1) free token slots. # Allocate (num_draft_tokens + 1) * 2 for safety as we don't know the current step or next step's accepted lengths. add_token_count = (self.num_draft_tokens + 1) * 2 if step == 0 else torch.max( self.accept_lengths).item() assert add_token_count > 0 for _ in range(add_token_count): self.pools_kv_cache_manager.step([False] * batch_size) else: self.pools_kv_cache_manager.step([False] * batch_size) torch.cuda.nvtx.range_pop() torch.cuda.nvtx.range_push("paged_kv_post_alloc") host_kv_cache_block_offsets = self.pools_kv_cache_manager.get_block_offsets( beam_width) kv_cache_block_offsets = host_kv_cache_block_offsets.to('cuda') if self.cross_attention: host_cross_kv_cache_block_offsets = self.cross_pools_kv_cache_manager.get_block_offsets( beam_width) cross_kv_cache_block_offsets = host_cross_kv_cache_block_offsets.to( 'cuda') torch.cuda.nvtx.range_pop() next_context = self.runtime.context_1 if step % 2 else self.runtime.context_0 next_step_tensors = self._get_next_step_shape_buffer( batch_size, beam_width, max_context_length, step, context_lengths, host_context_lengths, position_ids, last_token_ids, attention_mask, cross_attention_mask, next_src_cache_indirection, kv_cache_block_offsets, host_kv_cache_block_offsets, cross_kv_cache_block_offsets, host_cross_kv_cache_block_offsets, hidden_states, prompt_embedding_table, tasks, prompt_vocab_size, encoder_output, encoder_input_lengths, host_runtime_perf_knobs=gen_runtime_perf_knobs) # there are some tensors created inside the _get_next_step_shape_buffer, not owned by any object # needs to pro-long the life time of the tensors inside the next_step_tensors array # otherwise, it maybe released before the next step actually enqueued # one way to prolong it is to return the list, and destroy it in next step by assigning new values torch.cuda.nvtx.range_push("_set_tensors") self.runtime._set_tensors(next_context, next_step_tensors) torch.cuda.nvtx.range_pop() if self.cuda_graph_mode: self._capture_cuda_graph_and_instantiate( next_context, stream, step) should_stop = None logits = None if self.mapping.is_last_pp_rank(): logits = self.buffer['logits'] if self.is_redrafter_mode: should_stop = self.process_logits_including_draft( step, batch_size, logits, next_step_tensors) elif logits is not None: if self.is_medusa_mode: should_stop = self.process_logits_including_draft( step, batch_size, logits, next_step_tensors) else: if logits_processor is not None: final_output_ids = self.finalize_decoder( context_lengths, batch_size, beam_width, scfg, in_progress=True) # keep the shape as same as huggingface stopping_criteria final_output_ids_ = final_output_ids.reshape( -1, final_output_ids.size(-1)) logits = logits_processor(step, final_output_ids_, logits) self.buffer['logits'] = logits # [batch_size x beam_width, vocab_size_padded] -> [batch_size, beam_width, vocab_size_padded] next_token_logits = logits.reshape( (batch_size, beam_width, -1)).to(self.decoder_logits_dtype) decode_step = step + max_context_length stop_words_list_ptrs, stop_words_lens, max_stop_words_len = stop_words_data bad_words_list_ptrs, bad_words_lens, max_bad_words_len = bad_words_data should_stop = self.dynamic_decoder.forward( next_token_logits, decode_step, max_context_length, self.max_attention_window_size, self.sink_token_length, ite, batch_size, self.end_ids, self.embedding_bias_opt, context_lengths, sequence_limit_lengths, stop_words_list_ptrs, stop_words_lens, max_stop_words_len, bad_words_list_ptrs, bad_words_lens, max_bad_words_len, this_src_cache_indirection, self.output_ids, self.new_tokens, self.finished, self.finished, self.sequence_length_buffer, self.cum_log_probs, self.log_probs, self.log_probs_tiled, self.parent_ids, this_tgt_cache_indirection, self.beam_hyps_output_ids_cba, self.beam_hyps_seq_len_cba, self.beam_hyps_cum_log_probs_cba, self.beam_hyps_normed_scores_cba, self.beam_hyps_log_probs_cba, self.beam_hyps_min_normed_scores, self.beam_hyps_num_beams, self.beam_hyps_is_done, scfg.use_beam_hyps) if not self.use_gpt_attention_plugin: self.reorder_kv_cache_for_beam_search( batch_size, beam_width, max_context_length, step) if stopping_criteria is not None and not should_stop.item(): final_output_ids = self.finalize_decoder( context_lengths, batch_size, beam_width, scfg, in_progress=True) # keep the shape as same as huggingface stopping_criteria final_output_ids_ = final_output_ids.reshape( -1, final_output_ids.size(-1)) should_stop[0] = stopping_criteria( step, final_output_ids_, logits) if self.runtime._is_profiling(): if not context.report_to_profiler(): logger.warning("Runtime report to profiler failed.") self.runtime._insert_step_to_profiler(step) if self.mapping.has_pp(): should_stop = self.pp_communicate_new_tokens( should_stop, this_tgt_cache_indirection, self.sequence_length_buffer) if self.paged_kv_cache and self.has_attn_layers: if (step >= self.max_new_tokens - 1) or (should_stop is not None and should_stop.item()): # Free all blocks in all sequences. # With in-flight batching and while loop we'll free some sequences, when they are done self.pools_kv_cache_manager.step([True] * batch_size) if self.cross_attention: self.cross_pools_kv_cache_manager.step([True] * batch_size) if self.debug_mode: self.dump_debug_buffers(step) if next_step_tensors is not None: self.debug_buffer = { name: tensor.to_torch() for name, tensor in next_step_tensors.items() } return should_stop, next_step_tensors, tasks, context_lengths, host_context_lengths, attention_mask, context_logits, generation_logits, encoder_input_lengths
[docs] def dump_debug_buffers(self, step: int) -> None: if self.debug_tensors_to_save is not None: # restricted written tensors according to filter debug_tensor_names = copy.deepcopy(list(self.debug_buffer.keys())) for k in debug_tensor_names: if all([kk not in k for kk in self.debug_tensors_to_save]): self.debug_buffer.pop(k) debug_dir = Path( f"tllm_debug/PP_{self.mapping.pp_rank}/TP_{self.mapping.tp_rank}") debug_dir.mkdir(parents=True, exist_ok=True) for name, t in self.debug_buffer.items(): # convert tensor name to valid file name print("Saving: ", name) fname = name.replace("/", ".") t = torch_to_numpy(t.float()) np.save(debug_dir / f"{fname}-step{step}.npy", t) txt_format = "%d" if t.dtype in [np.int32, np.int8] else '%.18e' np.savetxt( debug_dir / f"{fname}-step{step}.txt", t.reshape(-1, t.shape[-1]), # savetxt accepts 2 dims only fmt=txt_format)
[docs] def decode_regular(self, batch_size: int, scfg: SamplingConfig, sequence_lengths: torch.Tensor, context_lengths: torch.Tensor, host_context_lengths, max_context_length: int, beam_width: int, cache_indirections: list, input_ids: torch.Tensor, hidden_states: torch.Tensor, prompt_embedding_table: torch.Tensor, tasks: torch.Tensor, prompt_vocab_size: torch.Tensor, ite: int, sequence_limit_lengths: torch.Tensor, stop_words_data, bad_words_data, output_sequence_lengths: bool = False, return_dict: bool = False, encoder_output: torch.Tensor = None, encoder_input_lengths: torch.Tensor = None, stopping_criteria: StoppingCriteria = None, logits_processor: LogitsProcessor = None, cross_attention_mask: torch.Tensor = None, **kwargs): kv_cache_block_offsets = None host_kv_cache_block_offsets = None cross_kv_cache_block_offsets = None host_cross_kv_cache_block_offsets = None attention_mask = None outputs_context_logits = None outputs_generation_logits = [] def get_outputs_dict(output_ids, num_steps=self.max_new_tokens): outputs = {} outputs['output_ids'] = output_ids if scfg.output_log_probs: outputs['log_probs'] = self.log_probs if scfg.output_cum_log_probs: outputs['cum_log_probs'] = self.cum_log_probs if output_sequence_lengths: outputs[ 'sequence_lengths'] = self.sequence_length_buffer.reshape( [batch_size, beam_width]) if self.gather_context_logits: outputs['context_logits'] = outputs_context_logits if self.gather_generation_logits: outputs['generation_logits'] = outputs_generation_logits if self.is_medusa_mode or self.is_redrafter_mode: outputs['steps_to_finish'] = num_steps if self.is_medusa_mode: outputs['medusa_output_tokens'] = self.medusa_output_tokens outputs['accept_lengths'] = self.accept_lengths if self.medusa_temperature != 0.0: outputs['medusa_output_logits'] = self.medusa_output_logits return outputs benchmark_profiler = kwargs.get('benchmark_profiler', None) generation_phase_step_count = 0 if benchmark_profiler is not None and benchmark_profiler.is_recording_perf_profile: self.runtime._set_profiler() def profile_fn(benchmark_profiler_obj, step_count): if benchmark_profiler_obj is not None: benchmark_profiler_obj.record_cuda_event('last_token') benchmark_profiler_obj.record_elapsed_time( 'first_token', 'last_token', 'generation_time') benchmark_profiler_obj.add_aux_info('generation_step_count', step_count) next_step_tensors = None for step in range(0, self.max_new_tokens): should_stop, next_step_tensors, tasks, context_lengths, host_context_lengths, attention_mask, context_logits, generation_logits, encoder_input_lengths = self.handle_per_step( cache_indirections, step, batch_size, max_context_length, beam_width, input_ids, hidden_states, scfg, kv_cache_block_offsets, host_kv_cache_block_offsets, cross_kv_cache_block_offsets, host_cross_kv_cache_block_offsets, prompt_embedding_table, tasks, context_lengths, host_context_lengths, attention_mask, cross_attention_mask, prompt_vocab_size, ite, sequence_limit_lengths, sequence_lengths, next_step_tensors, stop_words_data, bad_words_data, encoder_output, encoder_input_lengths, stopping_criteria, logits_processor, **kwargs) if step == 0: if benchmark_profiler is not None: benchmark_profiler.record_cuda_event('first_token') else: generation_phase_step_count = generation_phase_step_count + 1 if self.mapping.is_last_pp_rank(): if step == 0 and self.gather_context_logits: outputs_context_logits = context_logits if self.gather_generation_logits: outputs_generation_logits.append(generation_logits) if should_stop is not None and should_stop.item(): profile_fn(benchmark_profiler, generation_phase_step_count) if self.is_medusa_mode or self.is_redrafter_mode: # just hack away for now final_output_ids = self.output_ids.clone().unsqueeze(1) final_output_ids = final_output_ids[:, :, :self. max_seq_length - self.max_draft_tokens] else: final_output_ids = self.finalize_decoder( context_lengths, batch_size, beam_width, scfg) if self.mapping.is_first_pp_rank(): if return_dict: return get_outputs_dict(final_output_ids, step + 1) else: return final_output_ids elif self.mapping.is_last_pp_rank(): outputs = {} if self.gather_context_logits: outputs['context_logits'] = outputs_context_logits if self.gather_generation_logits: outputs['generation_logits'] = outputs_generation_logits return outputs else: return None assert not self.is_medusa_mode and not self.is_redrafter_mode, "the custom decoder doesn't support medusa/redrafter." profile_fn(benchmark_profiler, generation_phase_step_count) final_output_ids = self.finalize_decoder(context_lengths, batch_size, beam_width, scfg) if self.mapping.is_first_pp_rank(): if return_dict: return get_outputs_dict(final_output_ids) else: return final_output_ids elif self.mapping.is_last_pp_rank(): outputs = {} if self.gather_context_logits: outputs['context_logits'] = outputs_context_logits if self.gather_generation_logits: outputs['generation_logits'] = outputs_generation_logits return outputs else: return None
[docs] def decode_stream(self, batch_size: int, scfg: SamplingConfig, sequence_lengths: torch.Tensor, context_lengths: torch.Tensor, host_context_lengths, max_context_length: int, beam_width: int, cache_indirections: list, input_ids: torch.Tensor, hidden_states: torch.Tensor, prompt_embedding_table: torch.Tensor, tasks: torch.Tensor, prompt_vocab_size: torch.Tensor, ite: int, sequence_limit_lengths: torch.Tensor, stop_words_data, bad_words_data, output_sequence_lengths: bool = False, return_dict: bool = False, encoder_output: torch.Tensor = None, encoder_input_lengths: torch.Tensor = None, stopping_criteria: StoppingCriteria = None, logits_processor: LogitsProcessor = None, cross_attention_mask: torch.Tensor = None, **kwargs): kv_cache_block_offsets = None host_kv_cache_block_offsets = None cross_kv_cache_block_offsets = None host_cross_kv_cache_block_offsets = None attention_mask = None outputs_context_logits = None def get_outputs_dict(output_ids): outputs = {} outputs['output_ids'] = output_ids if output_sequence_lengths: outputs[ 'sequence_lengths'] = self.sequence_length_buffer.reshape( [batch_size, beam_width]) if self.gather_context_logits: outputs['context_logits'] = outputs_context_logits return outputs next_step_tensors = None for step in range(0, self.max_new_tokens): should_stop, next_step_tensors, tasks, context_lengths, host_context_lengths, attention_mask, context_logits, generation_logits, encoder_input_lengths = self.handle_per_step( cache_indirections, step, batch_size, max_context_length, beam_width, input_ids, hidden_states, scfg, kv_cache_block_offsets, host_kv_cache_block_offsets, cross_kv_cache_block_offsets, host_cross_kv_cache_block_offsets, prompt_embedding_table, tasks, context_lengths, host_context_lengths, attention_mask, cross_attention_mask, prompt_vocab_size, ite, sequence_limit_lengths, sequence_lengths, next_step_tensors, stop_words_data, bad_words_data, encoder_output, encoder_input_lengths, stopping_criteria, logits_processor) if step == 0: outputs_context_logits = context_logits if should_stop is not None: final_output_ids = self.finalize_decoder(context_lengths, batch_size, beam_width, scfg, in_progress=True) if self.mapping.is_first_pp_rank(): if return_dict: yield get_outputs_dict(final_output_ids) else: yield final_output_ids else: yield None if should_stop.item(): return final_output_ids = self.finalize_decoder(context_lengths, batch_size, beam_width, scfg) if self.mapping.is_first_pp_rank(): if return_dict: yield get_outputs_dict(final_output_ids) else: yield final_output_ids else: yield None
[docs] def decode_batch(self, input_ids: Sequence[torch.Tensor], sampling_config: SamplingConfig, streaming: bool = False, **kwargs): input_ids, context_lengths = _prepare_input_ids(input_ids) return self.decode(input_ids, context_lengths, sampling_config, streaming=streaming, **kwargs)
# As dynamic_decoder uses torch's current stream, we must ensure it runs on the same stream that # dynamic_decoder was set up with
[docs] @cuda_stream_guard def decode(self, input_ids: torch.Tensor, context_lengths: torch.Tensor, sampling_config: SamplingConfig, prompt_embedding_table: torch.Tensor = None, tasks: torch.Tensor = None, prompt_vocab_size: torch.Tensor = None, stop_words_list=None, bad_words_list=None, streaming: bool = False, output_sequence_lengths: bool = False, return_dict: bool = False, encoder_output: torch.Tensor = None, encoder_input_lengths: torch.Tensor = None, stopping_criteria: StoppingCriteria = None, logits_processor: LogitsProcessor = None, cross_attention_mask: torch.Tensor = None, **kwargs): scfg = sampling_config batch_size = context_lengths.size(0) beam_width = scfg.num_beams max_context_length = torch.max(context_lengths).item() host_context_lengths = context_lengths.cpu() assert batch_size == self.batch_size, \ "Given batch size is different from the one used in setup()," \ "rerun the setup function with the new batch size to avoid buffer overflow." assert max_context_length <= self.max_context_length, \ "Given input length is large then the one used in setup()," \ "rerun the setup function with the new max_context_length to avoid buffer overflow." assert beam_width == self.beam_width, \ "Given beam width is different from the one used in setup()," \ "rerun the setup function with the new beam width to avoid buffer overflow." assert self.sink_token_length <= torch.min(context_lengths).item(), \ "Given sink token length is larger than shortest context length," \ "rerun the setup function with a smaller sink token length." ite = 0 # index of local batches, will always be 0 if pp_size = 1 if self.remove_input_padding and input_ids.dim() == 2: assert input_ids.shape[ 0] == 1, "Packed 2D input must have shape [1, <sum of input lengths>]" input_ids = input_ids.squeeze(0) self.__setup_decoder(input_ids, scfg, host_context_lengths) if not self.buffer_allocated: raise RuntimeError('Buffer not allocated, please call setup first!') sequence_limit_lengths = torch.full((batch_size, 1), self.max_seq_length, dtype=torch.int32, device=self.device) # Sequence_lengths for the dynamic decoder still has the input paddings. sequence_lengths = torch.full((batch_size * beam_width, 1), max_context_length, dtype=torch.int32, device=self.device) cache_indirections = [ torch.full(( batch_size, beam_width, self.max_attention_window_size, ), 0, dtype=torch.int32, device=self.device), torch.full(( batch_size, beam_width, self.max_attention_window_size, ), 0, dtype=torch.int32, device=self.device) ] # ping-pong buffers hidden_states = None if self.mapping.has_pp(): max_num_tokens = max(batch_size * beam_width, batch_size * self.max_seq_length) hidden_size = self.hidden_size * self.mapping.tp_size hidden_states = torch.zeros((1, max_num_tokens, hidden_size)) # Init KV cache block manager if self.paged_kv_cache and self.has_attn_layers: num_blocks, max_blocks_per_seq = self._get_num_paged_blocks( self.max_attention_window_size, self.sink_token_length, self.use_one_more_block) self.buffer[ f'host_kv_cache_pool_pointers'] = self._memory_pool_allocator.get_kv_cache_pool_pointers( ) self.buffer[ f'host_kv_cache_pool_mapping'] = self._memory_pool_allocator.pool_mapping self.pools_kv_cache_manager = PoolsKVCacheManager( self._memory_pool_allocator.pools_metadata, max_blocks_per_seq, num_blocks, self.tokens_per_block, self.head_size, max_attention_window_size=self.max_attention_window_size, beam_width=beam_width, use_one_more_block=self.use_one_more_block, sink_token_len=self.sink_token_length) if self.cross_attention: cross_num_blocks, max_cross_blocks_per_seq = self._get_num_paged_blocks( self.encoder_max_input_length, sink_token_length=0, use_one_more_block=False) self.buffer[ f'host_cross_kv_cache_pool_pointers'] = self._cross_memory_pool_allocator.get_kv_cache_pool_pointers( ) self.buffer[ f'host_cross_kv_cache_pool_mapping'] = self._cross_memory_pool_allocator.pool_mapping self.cross_pools_kv_cache_manager = PoolsKVCacheManager( self._memory_pool_allocator.pools_metadata, max_cross_blocks_per_seq, cross_num_blocks, self.tokens_per_block, self.head_size, max_attention_window_size=self.encoder_max_input_length, beam_width=beam_width, use_one_more_block=False, sink_token_len=self.sink_token_length) # Add sequences to the manager for bi in range(batch_size): generation_sequence = GenerationSequence(seq_idx=bi, batch_idx=bi) self.pools_kv_cache_manager.add_sequence( generation_sequence, max_context_length) if self.cross_attention: cross_generation_sequence = GenerationSequence(seq_idx=bi, batch_idx=bi) self.cross_pools_kv_cache_manager.add_sequence( cross_generation_sequence, self.encoder_max_input_length, always_share_across_beam=True) # cross attention paged kv cache should always share the context blocks across beams # due to the fact that we are not adding new key/value cache to cross kv in generation if self.is_medusa_mode or self.is_redrafter_mode: if self.quant_mode.has_kv_cache_quant(): # Since torch does not support fp8 now, using int8 here. kv_cache_type = torch.int8 else: kv_cache_type = self.dtype if self.paged_kv_cache else self._tensor_dtype( f'present_key_value_{self.first_layer}') self.history_max_seq_length = [max_context_length] self.kv_cache_updater = KVCacheUpdater() assert not self.cross_attention assert self.use_gpt_attention_plugin if self.paged_kv_cache: self.kv_cache_updater.init_paged_kv_cache( self.num_layers, self.get_num_heads_kv(), self.head_size, kv_cache_type, self.pools_kv_cache_manager, self.buffer[f'host_kv_cache_pool_pointers']) else: past_key_value_list = [ self.buffer[f'present_key_value_{i}'] for i in range(self.first_layer, self.last_layer) ] self.kv_cache_updater.init_linear_kv_cache( self.num_layers, self.get_num_heads_kv(), self.head_size, kv_cache_type, past_key_value_list) stop_words_lens = None stop_words_list_ptrs = None max_stop_words_len = 0 if stop_words_list is not None: stop_words_list = torch.from_numpy(stop_words_list).contiguous().to( 'cuda') max_stop_words_len = stop_words_list.shape[2] stop_words_lens = torch.full((batch_size, ), max_stop_words_len, dtype=torch.int32).to('cuda') stop_words_list_ptrs = torch.zeros((batch_size), dtype=torch.int64) for bi in range(batch_size): stop_words_list_ptrs[bi] = stop_words_list.data_ptr( ) + bi * 2 * max_stop_words_len * stop_words_list.element_size( ) stop_words_list_ptrs = stop_words_list_ptrs.to('cuda') stop_words_data = (stop_words_list_ptrs, stop_words_lens, max_stop_words_len) bad_words_lens = None bad_words_list_ptrs = None max_bad_words_len = 0 if bad_words_list is not None: bad_words_list = torch.from_numpy(bad_words_list).contiguous().to( 'cuda') max_bad_words_len = bad_words_list.shape[2] bad_words_lens = torch.full((batch_size, ), max_bad_words_len, dtype=torch.int32).to('cuda') bad_words_list_ptrs = torch.zeros((batch_size), dtype=torch.int64) for bi in range(batch_size): bad_words_list_ptrs[bi] = bad_words_list.data_ptr( ) + bi * 2 * max_bad_words_len * bad_words_list.element_size() bad_words_list_ptrs = bad_words_list_ptrs.to('cuda') bad_words_data = (bad_words_list_ptrs, bad_words_lens, max_bad_words_len) # start context phase if streaming: return self.decode_stream( batch_size, scfg, sequence_lengths, context_lengths, host_context_lengths, max_context_length, beam_width, cache_indirections, input_ids, hidden_states, prompt_embedding_table, tasks, prompt_vocab_size, ite, sequence_limit_lengths, stop_words_data, bad_words_data, output_sequence_lengths, return_dict, encoder_output, encoder_input_lengths, stopping_criteria, logits_processor, cross_attention_mask, **kwargs) else: return self.decode_regular( batch_size, scfg, sequence_lengths, context_lengths, host_context_lengths, max_context_length, beam_width, cache_indirections, input_ids, hidden_states, prompt_embedding_table, tasks, prompt_vocab_size, ite, sequence_limit_lengths, stop_words_data, bad_words_data, output_sequence_lengths, return_dict, encoder_output, encoder_input_lengths, stopping_criteria, logits_processor, cross_attention_mask, **kwargs)
[docs] class ChatGLMGenerationSession(GenerationSession): def __init__( self, model_config: ModelConfig, engine_buffer, mapping: Mapping, debug_mode=False, debug_tensors_to_save=None, cuda_graph_mode=False, stream: torch.cuda.Stream = None, ): super().__init__( model_config, engine_buffer, mapping, debug_mode, debug_tensors_to_save, cuda_graph_mode, stream, ) self.mask_index_tensor = None def _prepare_context_inputs(self, batch_size, context_lengths, use_gpt_attention_plugin, remove_input_padding, **kwargs): max_context_length = kwargs.pop('max_context_length') last_token_ids = context_lengths.detach().clone() if remove_input_padding: input_lengths_acc = torch.cumsum(torch.cat( [torch.IntTensor([0]).cuda(), context_lengths], dim=0), dim=0) position_ids = torch.zeros([2, input_lengths_acc[-1]], dtype=torch.int32) for i in range(batch_size): position_ids[0, input_lengths_acc[i]:input_lengths_acc[ i + 1]] = torch.arange(0, context_lengths[i], dtype=torch.int32) position_ids[0, input_lengths_acc[i + 1] - 1] = context_lengths[i] - 2 position_ids[1, input_lengths_acc[i + 1] - 1] = 1 position_ids = position_ids.int().cuda() last_token_ids = torch.cumsum(last_token_ids, dim=0).int().cuda() # specialization for GLM series models if kwargs["pad_id"] in [50256, 50259]: if kwargs["pad_id"] == 50256: # glm_2b / glm_10b mask_ids = [50260, 50264, 50263] else: # glm_10b_chinese / glm_large_chinese mask_ids = [50003, 50008, 50009] self.mask_index_tensor = \ torch.zeros([batch_size], dtype=torch.int32) position_ids = position_ids.cpu() for i in range(batch_size): length = context_lengths[i] input_ids = kwargs["input_ids"][ 0:context_lengths[i]] if i == 0 else kwargs[ "input_ids"][sum(context_lengths[0:i] ):sum(context_lengths[0:i]) + length] mask_index = [ torch.where(input_ids == id)[0].int() for id in mask_ids ] tail_index = torch.Tensor([max_context_length]).int().cuda() mask_index.append(tail_index) mask_index = torch.cat(mask_index, dim=0).min() self.mask_index_tensor[i] = int(mask_index) position_ids[0][sum(context_lengths[0:i + 1]) - 1] = int(mask_index) position_ids = position_ids.cuda() else: position_ids = torch.zeros([batch_size, 2, max_context_length], dtype=torch.int32) position_ids[:, 0, :] = torch.arange(max_context_length) # specialization for GLM series models if kwargs["pad_id"] in [50256, 50259]: if kwargs["pad_id"] == 50256: # glm_2b / glm_10b mask_ids = [50260, 50264, 50263] else: # glm_10b_chinese / glm_large_chinese mask_ids = [50003, 50008, 50009] self.mask_index_tensor = \ torch.zeros([batch_size], dtype=torch.int32) for i in range(batch_size): length = context_lengths[i] input_ids = kwargs["input_ids"][i] mask_index = [ torch.where(input_ids == id)[0].int() for id in mask_ids ] tail_index = torch.Tensor([max_context_length]).int().cuda() mask_index.append(tail_index) mask_index = torch.cat(mask_index, dim=0).min() position_ids[i, 0, length - 1] = int(mask_index) position_ids[i, 1, length - 1] = 1 self.mask_index_tensor[i] = int(mask_index) else: for i in range(batch_size): length = context_lengths[i] position_ids[i, 0, length - 1] = length - 2 position_ids[i, 1, length - 1] = 1 position_ids = position_ids.cuda() perf_knob_tensor_size = 16 context_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size, dtype=torch.int64) inputs = { 'position_ids': position_ids, 'last_token_ids': last_token_ids, 'host_runtime_perf_knobs': context_runtime_perf_knobs } if not use_gpt_attention_plugin: attention_mask = torch.zeros((batch_size, 1)) inputs['attention_mask'] = attention_mask return inputs def _prepare_generation_inputs(self, batch_size, context_lengths, use_gpt_attention_plugin, remove_input_padding, **kwargs): step = kwargs.pop('step') num_beams = kwargs.pop('num_beams') last_token_ids = torch.ones_like(context_lengths) if remove_input_padding: def _tile_beam_width_chatglm(tensor: torch.Tensor, num_beams: int): new_shape = np.array(tensor.shape) new_shape[1] = new_shape[1] * num_beams tile_size = np.ones(new_shape.shape, dtype=np.int32) tile_size = np.insert(tile_size, 2, num_beams) new_tensor = torch.unsqueeze(tensor, 2) new_tensor = new_tensor.tile(tile_size.tolist()) new_tensor = new_tensor.reshape(new_shape.tolist()) return new_tensor position_ids = torch.zeros([2, batch_size], dtype=torch.int32) for i in range(batch_size): position_ids[0, i] = context_lengths[i * num_beams] - 2 position_ids[1, i] = step + 2 position_ids = _tile_beam_width_chatglm(position_ids, num_beams) position_ids = position_ids.int().cuda() last_token_ids = torch.cumsum(last_token_ids, dim=0).int().cuda() if self.mask_index_tensor is not None: # specialization for GLM series models position_ids = position_ids.cpu() for i in range(batch_size): position_ids[0][i] = self.mask_index_tensor[i] position_ids = position_ids.cuda() else: data = [] if self.mask_index_tensor is not None: # specialization for GLM series models for i in range(batch_size): data.append([[self.mask_index_tensor[i]], [step + 2]]) else: for i in range(batch_size): data.append([[context_lengths[i * num_beams] - 2], [step + 2]]) position_ids = torch.tensor(data, dtype=torch.int32, device='cuda') position_ids = _tile_beam_width(position_ids, num_beams) perf_knob_tensor_size = 16 generation_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size, dtype=torch.int64) inputs = { 'position_ids': position_ids, 'last_token_ids': last_token_ids, 'host_runtime_perf_knobs': generation_runtime_perf_knobs } if not use_gpt_attention_plugin: attention_mask = torch.zeros((batch_size, 1)) inputs['attention_mask'] = attention_mask return inputs
[docs] class QWenForCausalLMGenerationSession(GenerationSession): def __init__( self, model_config: ModelConfig, engine_buffer, mapping: Mapping, debug_mode=False, debug_tensors_to_save=None, cuda_graph_mode=False, stream: torch.cuda.Stream = None, global_max_input_length: int = 2048, global_max_output_length: int = 4096, ): super().__init__(model_config, engine_buffer, mapping, debug_mode, debug_tensors_to_save=debug_tensors_to_save, cuda_graph_mode=cuda_graph_mode, stream=stream) self.global_max_input_length = global_max_input_length self.global_max_output_length = global_max_output_length
[docs] def generate( self, input_ids: torch.Tensor, input_lengths: torch.Tensor, sampling_config: SamplingConfig, max_new_tokens: int, runtime_rank: int = 0, ): max_input_length = torch.max(input_lengths).item() max_new_tokens = min(max_new_tokens, self.global_max_output_length - max_input_length) # setup batch_size, max_input_length, max_output_len self.setup(batch_size=input_lengths.size(0), max_context_length=max_input_length, max_new_tokens=max_new_tokens) output_ids = self.decode(input_ids, input_lengths, sampling_config) with torch.no_grad(): torch.cuda.synchronize() if runtime_rank == 0: outputs = output_ids[:, 0, :] return outputs