# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import math
from pathlib import Path
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorrt as trt
import torch
from .. import profiler
from .._utils import mpi_comm, mpi_world_size, numpy_to_torch
from ..bindings import KVCacheType, MpiComm
from ..bindings.executor import Executor
from ..builder import Engine, EngineConfig, get_engine_version
from ..logger import logger
from ..mapping import Mapping
from ..quantization import QuantMode
from .generation import (DISABLE_TORCH_DEVICE_SET, ChatGLMGenerationSession,
GenerationSession, LogitsProcessor, LoraManager,
ModelConfig, QWenForCausalLMGenerationSession,
SamplingConfig, StoppingCriteria, to_word_list_format)
def get_engine_name(model: str, dtype: str, tp_size: int, pp_size: int,
rank: int) -> str:
"""
Get the serialized engine file name.
Args:
model (str):
Model name, e.g., bloom, gpt.
dtype (str):
Data type, e.g., float32, float16, bfloat16,
tp_size (int):
The size of tensor parallel.
pp_size (int):
The size of pipeline parallel.
rank (int):
The rank id.
Returns:
str: The serialized engine file name.
"""
if pp_size == 1:
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
return '{}_{}_tp{}_pp{}_rank{}.engine'.format(model, dtype, tp_size,
pp_size, rank)
def read_config(config_path: Path) -> Tuple[ModelConfig, dict]:
"""
Read the engine config file and create a ModelConfig instance, return the ModelConfig instance
and other config fields in a dict.
Args:
config_path (Path):
The path of engine config file.
Returns:
Tuple[ModelConfig, dict]: A ModelConfig instance and other config fields.
"""
with open(config_path, 'r') as f:
config = json.load(f)
return _builder_to_model_config(config)
def _builder_to_model_config(config: dict) -> Tuple[ModelConfig, dict]:
builder_config = config['builder_config']
model_name = builder_config['name']
dtype = builder_config['precision']
tp_size = builder_config['tensor_parallel']
pp_size = builder_config.get('pipeline_parallel', 1)
kv_cache_type = KVCacheType(builder_config.get('kv_cache_type'))
world_size = tp_size * pp_size
assert world_size == mpi_world_size(), \
f'Engine world size ({tp_size} * {pp_size}) != Runtime world size ({mpi_world_size()})'
num_heads = builder_config['num_heads']
assert num_heads % tp_size == 0, \
f"The number of heads ({num_heads}) is not a multiple of tp_size ({tp_size})"
num_kv_heads = builder_config.get('num_kv_heads', num_heads)
# TODO: multi_query_mode should be removed
multi_query_mode = builder_config.get('multi_query_mode', False)
if multi_query_mode:
logger.warning(
"`multi_query_mode` config is deprecated. Please rebuild the engine."
)
# num_kv_heads, if exists in config, should override multi_query_mode
if multi_query_mode and ('num_kv_heads' not in builder_config):
num_kv_heads = 1
num_heads = num_heads // tp_size
num_kv_heads = (num_kv_heads + tp_size - 1) // tp_size
head_size = builder_config.get('head_size', None)
hidden_size = builder_config['hidden_size'] // tp_size
vocab_size = builder_config['vocab_size']
num_layers = builder_config['num_layers']
max_batch_size = builder_config['max_batch_size']
max_beam_width = builder_config['max_beam_width']
cross_attention = builder_config.get('cross_attention', False)
has_position_embedding = builder_config.get('has_position_embedding', True)
has_token_type_embedding = builder_config.get('has_token_type_embedding',
False)
gather_context_logits = builder_config.get('gather_context_logits', False)
gather_generation_logits = builder_config.get('gather_generation_logits',
False)
max_prompt_embedding_table_size = builder_config.get(
'max_prompt_embedding_table_size', 0)
quant_mode = QuantMode(builder_config.get('quant_mode', 0))
lora_target_modules = builder_config.get('lora_target_modules')
lora_trtllm_modules_to_hf_modules = builder_config.get(
'trtllm_modules_to_hf_modules')
max_medusa_token_len = builder_config.get('max_draft_len', 0)
num_medusa_heads = builder_config.get('num_medusa_heads', 0)
skip_cross_attn_blocks = bool(config['pretrained_config'].get(
'skip_cross_attn_blocks', False))
# ReDrafter
redrafter_num_beams = config['pretrained_config'].get(
'redrafter_num_beams', 0)
redrafter_draft_len_per_beam = config['pretrained_config'].get(
'redrafter_draft_len_per_beam', 0)
plugin_config = config['plugin_config']
use_gpt_attention_plugin = bool(plugin_config['gpt_attention_plugin'])
mamba_conv1d_plugin = bool(plugin_config['mamba_conv1d_plugin'])
remove_input_padding = plugin_config['remove_input_padding']
paged_state = plugin_config['paged_state']
tokens_per_block = plugin_config['tokens_per_block']
lora_plugin = plugin_config.get('lora_plugin')
model_config = ModelConfig(
max_batch_size=max_batch_size,
max_beam_width=max_beam_width,
vocab_size=vocab_size,
num_layers=num_layers,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
hidden_size=hidden_size,
head_size=head_size,
gpt_attention_plugin=use_gpt_attention_plugin,
mamba_conv1d_plugin=mamba_conv1d_plugin,
remove_input_padding=remove_input_padding,
model_name=model_name,
kv_cache_type=kv_cache_type,
paged_state=paged_state,
cross_attention=cross_attention,
has_position_embedding=has_position_embedding,
has_token_type_embedding=has_token_type_embedding,
tokens_per_block=tokens_per_block,
max_prompt_embedding_table_size=max_prompt_embedding_table_size,
quant_mode=quant_mode,
gather_context_logits=gather_context_logits,
gather_generation_logits=gather_generation_logits,
dtype=dtype,
lora_plugin=lora_plugin,
lora_target_modules=lora_target_modules,
trtllm_modules_to_hf_modules=lora_trtllm_modules_to_hf_modules,
num_medusa_heads=num_medusa_heads,
max_medusa_tokens=max_medusa_token_len,
skip_cross_attn_blocks=skip_cross_attn_blocks,
# ReDrafter
redrafter_num_beams=redrafter_num_beams,
redrafter_draft_len_per_beam=redrafter_draft_len_per_beam,
)
other_config = {
'world_size': world_size,
'tp_size': tp_size,
'pp_size': pp_size,
'max_batch_size': builder_config['max_batch_size'],
'max_input_len': builder_config['max_input_len'],
'max_output_len': builder_config['max_output_len'],
'max_beam_width': builder_config['max_beam_width']
}
return model_config, other_config
def _engine_config_to_model_config(engine_config: EngineConfig,
**kwargs) -> ModelConfig:
pretrained_config = engine_config.pretrained_config
build_config = engine_config.build_config
tp_size = pretrained_config.mapping.tp_size
num_heads = pretrained_config.num_attention_heads // tp_size
num_kv_heads = pretrained_config.num_key_value_heads
num_kv_heads = (num_kv_heads + tp_size - 1) // tp_size
hidden_size = pretrained_config.hidden_size // tp_size
head_size = pretrained_config.head_size
rnn_config_items = [
'conv_kernel', 'layer_types', 'rnn_hidden_size', 'state_size',
'state_dtype', 'rnn_head_size', 'rnn_conv_dim_size'
]
rnn_configs_kwargs = {}
for item in rnn_config_items:
if hasattr(pretrained_config, item):
rnn_configs_kwargs[item] = getattr(pretrained_config, item)
if not hasattr(build_config, 'kv_cache_type'):
logger.Warning(
'Build config doesn\'t have kv_cache_type, you might need to rebuild your enigne.'
)
# TODO(oargov): this is a hack, make it prettier!
if hasattr(pretrained_config, "num_kv_heads_per_layer"):
num_kv_heads_per_layer = pretrained_config.num_kv_heads_per_layer
elif hasattr(pretrained_config, "get_layer_num_kv_heads"):
# each layer has a different number of kv heads
attention_layers = [
layer_idx for layer_idx, layer_type in enumerate(
pretrained_config.layer_types) if layer_type == "attention"
] if hasattr(pretrained_config, "layer_types") else list(
range(pretrained_config.num_hidden_layers))
num_kv_heads_per_layer = [
pretrained_config.get_layer_num_kv_heads(layer_idx)
if layer_idx in attention_layers else 0
for layer_idx in range(pretrained_config.num_hidden_layers)
]
else:
num_kv_heads_per_layer = None
if hasattr(pretrained_config, "num_kv_heads_per_cross_attn_layer"):
num_kv_heads_per_cross_attn_layer = pretrained_config.num_kv_heads_per_cross_attn_layer
else:
num_kv_heads_per_cross_attn_layer = None
return ModelConfig(
max_batch_size=build_config.max_batch_size,
max_beam_width=build_config.max_beam_width,
vocab_size=pretrained_config.vocab_size,
num_layers=pretrained_config.num_hidden_layers,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
hidden_size=hidden_size,
head_size=head_size,
gpt_attention_plugin=bool(
build_config.plugin_config.gpt_attention_plugin),
mamba_conv1d_plugin=bool(
build_config.plugin_config.mamba_conv1d_plugin),
remove_input_padding=build_config.plugin_config.remove_input_padding,
paged_state=build_config.plugin_config.paged_state,
tokens_per_block=build_config.plugin_config.tokens_per_block,
quant_mode=pretrained_config.quant_mode,
gather_context_logits=build_config.gather_context_logits,
gather_generation_logits=build_config.gather_generation_logits,
dtype=pretrained_config.dtype,
max_prompt_embedding_table_size=build_config.
max_prompt_embedding_table_size,
lora_plugin=build_config.plugin_config.lora_plugin,
lora_target_modules=build_config.lora_config.lora_target_modules,
trtllm_modules_to_hf_modules=build_config.lora_config.
trtllm_modules_to_hf_modules,
max_medusa_tokens=pretrained_config.max_draft_len if hasattr(
pretrained_config, 'max_draft_len') else 0,
num_medusa_heads=pretrained_config.num_medusa_heads if hasattr(
pretrained_config, 'num_medusa_heads') else 0,
**rnn_configs_kwargs,
num_kv_heads_per_layer=num_kv_heads_per_layer,
num_kv_heads_per_cross_attn_layer=num_kv_heads_per_cross_attn_layer,
redrafter_num_beams=pretrained_config.redrafter_num_beams if hasattr(
pretrained_config, 'redrafter_num_beams') else 0,
redrafter_draft_len_per_beam=pretrained_config.
redrafter_draft_len_per_beam
if hasattr(pretrained_config, 'redrafter_draft_len_per_beam') else 0,
kv_cache_type=getattr(build_config, 'kv_cache_type',
KVCacheType.CONTINUOUS),
cross_attention=getattr(pretrained_config, 'cross_attention', False),
has_position_embedding=getattr(pretrained_config,
'has_position_embedding', True),
skip_cross_attn_blocks=getattr(pretrained_config,
'skip_cross_attn_blocks', False),
**kwargs)
class ModelRunnerMixin:
def _check_inputs(self, batch_input_ids: List[torch.Tensor],
sampling_config: SamplingConfig):
batch_size = len(batch_input_ids)
if batch_size > self.max_batch_size:
raise RuntimeError(
f"Input batch size ({batch_size}) exceeds the engine or specified limit ({self.max_batch_size})"
)
input_lengths = [x.size(0) for x in batch_input_ids]
max_length = max(input_lengths)
if max_length > self.max_input_len:
raise RuntimeError(
f"Maximum input length ({max_length}) exceeds the engine or specified limit ({self.max_input_len})"
)
if max_length + sampling_config.max_new_tokens > self.max_seq_len:
raise RuntimeError(
f"Maximum input length ({max_length}) + maximum new tokens ({sampling_config.max_new_tokens}) exceeds the engine or specified limit ({self.max_seq_len})"
)
if sampling_config.num_beams > self.max_beam_width:
raise RuntimeError(
f"Num beams ({sampling_config.num_beams}) exceeds the engine or specified limit ({self.max_beam_width})"
)
def _prepare_inputs(self, batch_input_ids: List[torch.Tensor],
pad_id: int) -> Tuple[torch.Tensor]:
# Cast to int32
batch_input_ids = [x.type(torch.int32) for x in batch_input_ids]
input_lengths = [x.size(0) for x in batch_input_ids]
max_length = max(input_lengths)
if self.remove_input_padding:
batch_input_ids = torch.concat(batch_input_ids)
else:
# Right padding for trt-llm
paddings = [
torch.ones(max_length - l, dtype=torch.int32) * pad_id
for l in input_lengths
]
batch_input_ids = [
torch.cat([x, pad]) for x, pad in zip(batch_input_ids, paddings)
]
batch_input_ids = torch.stack(batch_input_ids)
input_lengths = torch.tensor(input_lengths, dtype=torch.int32)
return batch_input_ids, input_lengths
def _prepare_outputs(self, outputs: Optional[dict],
input_lengths: torch.Tensor) -> dict:
if outputs is not None:
batch_size = input_lengths.size(0)
if 'context_logits' in outputs:
if self.mapping.has_pp():
# If pp size > 1, the context logits and generation logits are both in last pp
# Last pp rank send context logits and generation logits to rank 0
if self.mapping.is_last_pp_rank():
context_logits = outputs['context_logits']
context_logits_host = context_logits.cpu()
mpi_comm().send(context_logits_host, dest=0)
elif self.mapping.is_first_pp_rank():
context_logits_host = mpi_comm().recv(
source=self.mapping.prev_pp_rank()
) # Prev pp rank of rank=0 is the last pp
context_logits = context_logits_host.to(
torch.device('cuda:0'))
outputs['context_logits'] = context_logits
context_logits = outputs['context_logits']
context_logits_output = []
if self.remove_input_padding:
if isinstance(self.session, Executor) and batch_size > 1:
# The starting position of the context logits buffer of each micro batch is separated
num_batches = self.mapping.pp_size
micro_batch_size = math.ceil(batch_size /
self.mapping.pp_size)
for i in range(num_batches):
start_idx = i * micro_batch_size
end_idx = min(start_idx + micro_batch_size,
batch_size)
micro_context_logits = context_logits[
start_idx:end_idx]
micro_input_lengths = input_lengths[
start_idx:end_idx]
micro_context_logits = micro_context_logits.flatten(
end_dim=-2)
seg_points = [0] + micro_input_lengths.cumsum(
dim=0).tolist()
context_logits_output += [
micro_context_logits[s:e]
for s, e in zip(seg_points[:-1], seg_points[1:])
]
else:
context_logits = context_logits.flatten(end_dim=-2)
seg_points = [0] + input_lengths.cumsum(dim=0).tolist()
context_logits_output = [
context_logits[s:e]
for s, e in zip(seg_points[:-1], seg_points[1:])
]
else:
context_logits_output = [
context_logits[bidx, :input_lengths[bidx]]
for bidx in range(batch_size)
]
assert len(context_logits_output) == batch_size
outputs['context_logits'] = context_logits_output
if 'generation_logits' in outputs:
if self.mapping.has_pp():
if self.mapping.is_last_pp_rank():
generation_logits = outputs['generation_logits']
if isinstance(generation_logits, list):
generation_logits_host = [
logits.cpu() for logits in generation_logits
]
else:
generation_logits_host = generation_logits.cpu()
mpi_comm().send(generation_logits_host, dest=0)
elif self.mapping.is_first_pp_rank():
generation_logits_host = mpi_comm().recv(
source=self.mapping.prev_pp_rank()
) # Prev pp rank of rank=0 is the last pp
if isinstance(generation_logits_host, list):
generation_logits = [
logits.to(torch.device('cuda:0'))
for logits in generation_logits_host
]
else:
generation_logits = generation_logits_host.to(
torch.device('cuda:0'))
outputs['generation_logits'] = generation_logits
if isinstance(self.session, GenerationSession):
# Convert logits format to be same as GptSession
generation_logits = torch.stack(
outputs['generation_logits'], dim=1)
batch_x_beam, max_gen_len, voc_size = generation_logits.size(
)
num_beams = batch_x_beam // batch_size
generation_logits = generation_logits.view(
batch_size, num_beams, max_gen_len, voc_size)
outputs['generation_logits'] = generation_logits
return outputs
def _prepare_embedding_table(self, prompt_table: Union[str, torch.Tensor]):
if isinstance(prompt_table, str):
prompt_table_data = numpy_to_torch(
np.load(prompt_table)).to(dtype=self.dtype)
else:
assert isinstance(
prompt_table,
torch.Tensor), "Prompt table should be str or torch.Tensor"
prompt_table_data = prompt_table.to(dtype=self.dtype)
return prompt_table_data
def _prepare_ptuning(self, prompt_table: Union[str, torch.Tensor],
tasks: str, batch_size: int):
if self.max_prompt_embedding_table_size == 0:
return {}
if prompt_table is not None:
prompt_table_data = self._prepare_embedding_table(prompt_table)
if len(prompt_table_data.size()) == 3:
_, task_vocab_size, hidden_size = prompt_table_data.size()
elif len(prompt_table_data.size()) == 2:
task_vocab_size, hidden_size = prompt_table_data.size()
task_vocab_size = torch.tensor([task_vocab_size], dtype=torch.int32)
prompt_table_data = prompt_table_data.view(-1, hidden_size)
else:
prompt_table_data = torch.empty(
[1, self.hidden_size * self.mapping.tp_size], dtype=self.dtype)
task_vocab_size = torch.zeros([1], dtype=torch.int32)
if tasks is not None:
tasks = torch.tensor([int(t) for t in tasks.split(',')],
dtype=torch.int32)
assert tasks.size(0) == batch_size, \
f"Number of supplied tasks ({tasks.size(0)}) must match input batch size ({batch_size})"
else:
tasks = torch.zeros([batch_size], dtype=torch.int32)
if isinstance(self.session, GenerationSession):
return {
'prompt_embedding_table': prompt_table_data.cuda(),
'tasks': tasks.cuda(),
'prompt_vocab_size': task_vocab_size.cuda()
}
else:
return {
'embedding_table': prompt_table_data.cuda(),
'tasks': tasks.cuda(),
'vocab_size': task_vocab_size.cuda()
}
[docs]
class ModelRunner(ModelRunnerMixin):
"""
An interface class that wraps GenerationSession and provides generation methods.
"""
def __init__(
self,
session: GenerationSession,
max_batch_size: int,
max_input_len: int,
max_seq_len: int,
max_beam_width: int,
kv_cache_type: KVCacheType,
lora_manager: Optional[LoraManager] = None,
) -> None:
"""
Create a ModelRunner instance.
You are recommended to use the from_dir method to load the engine and create a ModelRunner instance.
Args:
session (GenerationSession):
The TensorRT session created from an engine.
max_batch_size (int):
The maximum batch size allowed for the input.
max_input_len (int):
The maximum input length allowed for the input.
max_seq_len (int):
The maximum sequence length (input + new tokens).
max_beam_width (int):
The maximum beam width.
lora_manager (LoraManager):
The LoRA manager to handle LoRA weights.
"""
self.session = session
self.max_batch_size = max_batch_size
self.max_input_len = max_input_len
self.max_seq_len = max_seq_len
self.max_beam_width = max_beam_width
self.lora_manager = lora_manager
self.kv_cache_type = kv_cache_type
self.enable_context_fmha_fp32_acc = False
self.multi_block_mode = True
[docs]
@classmethod
def from_engine(
cls,
engine: Engine,
*,
max_output_len: Optional[int],
lora_dir: Optional[List[str]],
rank: int,
debug_mode: bool,
lora_ckpt_source: str,
medusa_choices: List[List[int]],
stream: torch.cuda.Stream,
gpu_weights_percent: float,
enable_context_fmha_fp32_acc: Optional[bool],
multi_block_mode: Optional[bool],
) -> 'ModelRunner':
model_config = _engine_config_to_model_config(
engine.config, gpu_weights_percent=gpu_weights_percent)
if model_config.kv_cache_type == KVCacheType.DISABLED:
assert max_output_len == 1 or max_output_len is None, 'Disabled KV cache is intended for context phase only now.'
pretrained_config = engine.config.pretrained_config
build_config = engine.config.build_config
max_batch_size = build_config.max_batch_size
max_input_len = build_config.max_input_len
max_seq_len = build_config.max_seq_len
max_beam_width = build_config.max_beam_width
if 'GLM' in pretrained_config.architecture and pretrained_config.chatglm_version in [
'glm', 'chatglm'
]:
session_cls = ChatGLMGenerationSession
else:
session_cls = GenerationSession
engine_buffer = engine.engine
runtime_mapping = pretrained_config.mapping
if medusa_choices is not None:
assert session_cls == GenerationSession, "Medusa is only supported by GenerationSession"
assert model_config.max_medusa_tokens > 0, \
"medusa_chioce is specified but model_config.max_medusa_tokens is 0."
if MpiComm.size() > runtime_mapping.gpus_per_node:
assert MpiComm.local_size() == runtime_mapping.gpus_per_node
if not DISABLE_TORCH_DEVICE_SET:
torch.cuda.set_device(rank % runtime_mapping.gpus_per_node)
session = session_cls(model_config,
engine_buffer,
runtime_mapping,
debug_mode=debug_mode,
stream=stream)
if session.runtime.engine.streamable_weights_size:
session.runtime._set_weight_streaming(gpu_weights_percent)
if session.use_lora_plugin:
lora_manager = LoraManager()
if lora_dir is not None:
lora_manager.load_from_ckpt(lora_dir,
model_config=model_config,
runtime_mapping=runtime_mapping,
ckpt_source=lora_ckpt_source)
else:
lora_manager = None
runner = cls(session=session,
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_seq_len=max_seq_len,
max_beam_width=max_beam_width,
kv_cache_type=model_config.kv_cache_type,
lora_manager=lora_manager)
runner.enable_context_fmha_fp32_acc = enable_context_fmha_fp32_acc
runner.multi_block_mode = multi_block_mode
return runner
[docs]
@classmethod
def from_dir(
cls,
engine_dir: str,
*,
max_output_len: Optional[int] = None,
lora_dir: Optional[List[str]] = None,
rank: int = 0,
debug_mode: bool = False,
lora_ckpt_source: str = "hf",
medusa_choices: List[List[int]] = None,
stream: torch.cuda.Stream = None,
gpu_weights_percent: float = 1,
enable_context_fmha_fp32_acc: Optional[bool] = None,
multi_block_mode: Optional[bool] = None,
) -> 'ModelRunner':
"""
Create a ModelRunner instance from an engine directory.
Args:
engine_dir (str):
The directory that contains the serialized engine files and config files.
max_output_len (Optional[int]):
max_output_len, this arg might be available only when loading time, generate will still to check when disable_kv_cache is enabled.
lora_dir (Optional[List[str]]):
The directories that contain LoRA weights.
rank (int):
The runtime rank id.
debug_mode (bool):
Whether or not to turn on the debug mode.
medusa_choices (List[List[int]]):
Medusa choices to use when in Medusa decoding
stream (torch.cuda.Stream):
Stream to use.
multi_block_mode (bool):
Whether to distribute the work across multiple CUDA thread-blocks on the GPU for masked MHA kernel.
Returns:
ModelRunner: An instance of ModelRunner.
"""
engine_version = get_engine_version(engine_dir)
profiler.start('load tensorrt_llm engine')
# the old engine format
if engine_version is None:
engine_dir = Path(engine_dir)
config_path = engine_dir / "config.json"
model_config, other_config = read_config(config_path)
world_size = other_config.pop('world_size')
tp_size = other_config.pop('tp_size')
pp_size = other_config.pop('pp_size')
max_batch_size = other_config.pop('max_batch_size')
max_input_len = other_config.pop('max_input_len')
max_output_len = other_config.pop('max_output_len')
max_beam_width = other_config.pop('max_beam_width')
runtime_mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=tp_size,
pp_size=pp_size)
engine_name = get_engine_name(model_config.model_name,
model_config.dtype, tp_size, pp_size,
rank)
serialize_path = engine_dir / engine_name
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
if model_config.model_name in ('chatglm_6b', 'glm_10b'):
session_cls = ChatGLMGenerationSession
elif model_config.model_name == 'qwen':
session_cls = QWenForCausalLMGenerationSession
else:
session_cls = GenerationSession
if medusa_choices is not None:
assert model_config.max_medusa_tokens > 0, \
"medusa_choice is specified but model_config.max_medusa_tokens is 0."
if not DISABLE_TORCH_DEVICE_SET:
torch.cuda.set_device(rank % runtime_mapping.gpus_per_node)
session = session_cls(model_config,
engine_buffer,
runtime_mapping,
debug_mode=debug_mode,
stream=stream)
if session.use_lora_plugin:
lora_manager = LoraManager()
if lora_dir is not None:
lora_manager.load_from_ckpt(lora_dir,
model_config=model_config,
runtime_mapping=runtime_mapping,
ckpt_source=lora_ckpt_source)
else:
lora_manager = None
if session.runtime.engine.streamable_weights_size:
session.runtime._set_weight_streaming(gpu_weights_percent)
profiler.stop('load tensorrt_llm engine')
loading_time = profiler.elapsed_time_in_sec(
"load tensorrt_llm engine")
logger.info(f'Load engine takes: {loading_time} sec')
runner = cls(session=session,
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_seq_len=max_input_len + max_output_len,
max_beam_width=max_beam_width,
kv_cache_type=KVCacheType.CONTINUOUS,
lora_manager=lora_manager)
runner.enable_context_fmha_fp32_acc = enable_context_fmha_fp32_acc
runner.multi_block_mode = multi_block_mode
return runner
else:
# the new engine format
engine = Engine.from_dir(engine_dir, rank)
if lora_dir is None:
config_lora_dir = engine.config.build_config.lora_config.lora_dir
if len(config_lora_dir) > 0:
lora_dir = [
f"{engine_dir}/{dir}" for dir in config_lora_dir
]
lora_ckpt_source = engine.config.build_config.lora_config.lora_ckpt_source
runner = ModelRunner.from_engine(
engine=engine,
max_output_len=max_output_len,
lora_dir=lora_dir,
rank=rank,
debug_mode=debug_mode,
lora_ckpt_source=lora_ckpt_source,
medusa_choices=medusa_choices,
stream=stream,
gpu_weights_percent=gpu_weights_percent,
enable_context_fmha_fp32_acc=enable_context_fmha_fp32_acc,
multi_block_mode=multi_block_mode,
)
profiler.stop('load tensorrt_llm engine')
loading_time = profiler.elapsed_time_in_sec(
"load tensorrt_llm engine")
logger.info(f'Load engine takes: {loading_time} sec')
return runner
@property
def dtype(self) -> torch.dtype:
return self.session.dtype
@property
def vocab_size(self) -> int:
return self.session.vocab_size
@property
def vocab_size_padded(self) -> int:
return self.session.vocab_size_padded
@property
def hidden_size(self) -> int:
return self.session.hidden_size
@property
def num_heads(self) -> int:
return self.session.num_heads
@property
def num_layers(self) -> int:
return self.session.num_layers
@property
def max_sequence_length(self) -> int:
return self.max_seq_len
@property
def remove_input_padding(self) -> bool:
return self.session.remove_input_padding
@property
def use_lora_plugin(self) -> bool:
return self.session.use_lora_plugin
@property
def max_prompt_embedding_table_size(self) -> int:
return self.session.max_prompt_embedding_table_size
@property
def mapping(self) -> Mapping:
return self.session.mapping
@property
def gather_context_logits(self) -> bool:
return self.session.gather_context_logits
@property
def gather_generation_logits(self) -> bool:
return self.session.gather_generation_logits
[docs]
def generate(self,
batch_input_ids: List[torch.Tensor],
position_ids: List[torch.Tensor] = None,
sampling_config: Optional[SamplingConfig] = None,
prompt_table: Optional[Union[str, torch.Tensor]] = None,
prompt_tasks: Optional[str] = None,
lora_uids: Optional[list] = None,
streaming: bool = False,
stopping_criteria: Optional[StoppingCriteria] = None,
logits_processor: Optional[LogitsProcessor] = None,
medusa_choices: Optional[List[List[int]]] = None,
encoder_max_input_length: int = None,
encoder_input_features: List[torch.Tensor] = None,
encoder_output_lengths: List[torch.Tensor] = None,
cross_attention_masks: List[torch.Tensor] = None,
**kwargs) -> Union[torch.Tensor, dict]:
"""
Generates sequences of token ids.
The generation-controlling parameters are set in the sampling_config; it will be set to a default one if not passed.
You can override any sampling_config's attributes by passing corresponding parameters.
Args:
batch_input_ids (List[torch.Tensor]):
A list of input id tensors. Each tensor is of shape (sequence_length, ).
sampling_config (SamplingConfig):
The sampling configuration to be used as base parametrization for the generation call.
The passed **kwargs matching the sampling_config's attributes will override them.
If the sampling_config is not provided, a default will be used.
prompt_table (str or torch.Tensor):
The file path of prompt table (.npy format, exported by nemo_prompt_convert.py) or the prompt table itself.
prompt_tasks (str):
The prompt tuning task ids for the input batch, in format of comma-separated list (e.g., 0,3,1,0).
lora_uids (list):
The uids of LoRA weights for the input batch. Use -1 to disable the LoRA module.
streaming (bool):
Whether or not to use streaming mode for generation.
stopping_criteria (StoppingCriteria):
Custom stopping criteria.
logits_processor (LogitsProcessor):
Custom logits processors.
medusa_choices (List[List[int]]):
Medusa decoding choices.
kwargs (Dict[str, Any]:
Ad hoc parametrization of sampling_config.
The passed **kwargs matching the sampling_config's attributes will override them.
Returns:
torch.Tensor or dict:
If return_dict=False, the method returns generated output_ids.
If return_dict=True, the method returns a dict of output_ids,
sequence_lengths (if sampling_config.output_sequence_lengths=True),
context_logits and generation_logits (if self.gather_context_logits=True
and self.gather_generation_logits=True, respectively).
"""
# Use sampling_config like HF's generation_config
if sampling_config is None:
sampling_config = SamplingConfig(end_id=None, pad_id=None)
else:
sampling_config = copy.deepcopy(sampling_config)
sampling_config.update(**kwargs)
# To prevent numerical overflow when the temperature is set to 0.0
# Modify generation.SamplingConfig
if isinstance(sampling_config.temperature,
float) and sampling_config.temperature == 0.0:
logger.warning(
"Convert `temperature=0.0` to `temperature=1.0` and `top_k=1` to prevent overflow."
)
sampling_config.temperature = 1.0
sampling_config.top_k = 1
self._check_inputs(batch_input_ids, sampling_config)
if kwargs.get('num_return_sequences', None) is not None:
raise ValueError(
'num_return_sequences will be ignored since '
'num_return_sequences > 1 is not supported on python runtime. '
'Please use C++ runtime.')
batch_size = len(batch_input_ids)
batch_input_ids, input_lengths = self._prepare_inputs(
batch_input_ids, sampling_config.pad_id)
def maybe_convert_to_words_list_format(
words_list: Optional[Union[list, np.ndarray, torch.Tensor]]
) -> Optional[np.ndarray]:
if words_list is None or isinstance(words_list, np.ndarray):
return words_list
elif isinstance(words_list, torch.Tensor):
return words_list.numpy()
elif isinstance(words_list, list):
return to_word_list_format(words_list)
else:
raise TypeError(
f"Unexpected words_list type={type(words_list)}. Only list, np.ndarray, and torch.Tensor are supported."
)
if cross_attention_masks is not None:
encoder_input_features = torch.concat(encoder_input_features)
encoder_output_lengths = torch.concat(encoder_output_lengths)
sampling_config.bad_words_list = maybe_convert_to_words_list_format(
sampling_config.bad_words_list)
sampling_config.stop_words_list = maybe_convert_to_words_list_format(
sampling_config.stop_words_list)
if not self.kv_cache_type and sampling_config.max_new_tokens > 1:
raise RuntimeError(
'Disabled KV cache is intended for context phase only now.')
self.session.setup(
batch_size=batch_size,
max_context_length=input_lengths.max().item(),
max_new_tokens=sampling_config.max_new_tokens,
beam_width=sampling_config.num_beams,
max_attention_window_size=sampling_config.max_attention_window_size,
sink_token_length=sampling_config.sink_token_length,
lora_manager=self.lora_manager,
lora_uids=lora_uids,
medusa_choices=medusa_choices,
enable_context_fmha_fp32_acc=self.enable_context_fmha_fp32_acc,
multi_block_mode=self.multi_block_mode,
encoder_max_input_length=encoder_max_input_length,
)
batch_input_ids = batch_input_ids.cuda()
input_lengths = input_lengths.cuda()
other_kwargs = self._prepare_ptuning(prompt_table, prompt_tasks,
batch_size)
other_kwargs['skip_cross_attn_blocks'] = kwargs.get(
'skip_cross_attn_blocks', None)
outputs = self.session.decode(
batch_input_ids,
input_lengths,
sampling_config,
stop_words_list=sampling_config.stop_words_list,
bad_words_list=sampling_config.bad_words_list,
output_sequence_lengths=sampling_config.output_sequence_lengths,
return_dict=sampling_config.return_dict,
streaming=streaming,
stopping_criteria=stopping_criteria,
logits_processor=logits_processor,
position_ids=position_ids,
encoder_output=encoder_input_features,
encoder_input_lengths=encoder_output_lengths,
cross_attention_mask=cross_attention_masks,
**other_kwargs)
if sampling_config.return_dict:
if streaming:
outputs = (self._prepare_outputs(curr_outputs, input_lengths)
for curr_outputs in outputs)
else:
outputs = self._prepare_outputs(outputs, input_lengths)
return outputs
[docs]
def serialize_engine(self) -> trt.IHostMemory:
"""
Serialize the engine.
Returns:
bytes: The serialized engine.
"""
return self.session.runtime._serialize_engine()