Expert Configuration of LLM API#

For advanced TensorRT-LLM users, the full set of tensorrt_llm._torch.auto_deploy.llm_args.LlmArgs is exposed. Use at your own risk. The argument list may diverge from the standard TRT-LLM argument list.

  • All configuration fields used by the AutoDeploy core pipeline, InferenceOptimizer, are exposed exclusively in AutoDeployConfig in tensorrt_llm._torch.auto_deploy.llm_args. Please make sure to refer to those first.

  • For advanced users, the full set of LlmArgs in tensorrt_llm._torch.auto_deploy.llm_args can be used to configure the AutoDeploy LLM API, including runtime options.

  • Note that some fields in the full LlmArgs object are overlapping, duplicated, and/or ignored in AutoDeploy, particularly arguments pertaining to configuring the model itself since AutoDeploy’s model ingestion+optimize pipeline significantly differs from the default manual workflow in TensorRT-LLM.

  • However, with the proper care the full LlmArgs objects can be used to configure advanced runtime options in TensorRT-LLM.

  • Any valid field can be simply provided as keyword argument (”**kwargs”) to the AutoDeploy LLM API.

Expert Configuration of build_and_run_ad.py#

For advanced users, build_and_run_ad.py provides advanced configuration capabilities using a flexible argument parser powered by PyDantic Settings and OmegaConf. You can use dot notation for CLI arguments, provide multiple YAML configuration files, and utilize sophisticated configuration precedence rules to create complex deployment configurations.

CLI Arguments with Dot Notation#

The script supports flexible CLI argument parsing using dot notation to modify nested configurations dynamically. You can target any field in both the ExperimentConfig in examples/auto_deploy/build_and_run_ad.py and nested AutoDeployConfig or LlmArgs objects in tensorrt_llm._torch.auto_deploy.llm_args:

# Configure model parameters
# NOTE: config values like num_hidden_layers are automatically resolved into the appropriate nested
# dict value ``{"args": {"model_kwargs": {"num_hidden_layers": 10}}}`` although not explicitly
# specified as CLI arg
python build_and_run_ad.py \
  --model "meta-llama/Meta-Llama-3.1-8B-Instruct" \
  --args.model-kwargs.num-hidden-layers=10 \
  --args.model-kwargs.hidden-size=2048 \
  --args.tokenizer-kwargs.padding-side=left

# Configure runtime and backend options
python build_and_run_ad.py \
  --model "TinyLlama/TinyLlama-1.1B-Chat-v1.0" \
  --args.world-size=2 \
  --args.compile-backend=torch-opt \
  --args.attn-backend=flashinfer

# Configure prompting and benchmarking
python build_and_run_ad.py \
  --model "microsoft/phi-4" \
  --prompt.batch-size=4 \
  --prompt.sp-kwargs.max-tokens=200 \
  --prompt.sp-kwargs.temperature=0.7 \
  --benchmark.enabled=true \
  --benchmark.bs=8 \
  --benchmark.isl=1024

YAML Configuration Files#

Both ExperimentConfig and AutoDeployConfig/LlmArgs inherit from DynamicYamlMixInForSettings, which enables you to provide multiple YAML configuration files that are automatically deep-merged at runtime.

Create a YAML configuration file (e.g., my_config.yaml):

# my_config.yaml
args:
  model_kwargs:
    num_hidden_layers: 12
    hidden_size: 1024
  world_size: 4
  compile_backend: torch-compile
  attn_backend: triton
  max_seq_len: 2048
  max_batch_size: 16
  transforms:
    sharding:
      strategy: auto
    quantization:
      enabled: false

prompt:
  batch_size: 8
  sp_kwargs:
    max_tokens: 150
    temperature: 0.8
    top_k: 50

benchmark:
  enabled: true
  num: 20
  bs: 4
  isl: 1024
  osl: 256

Create an additional override file (e.g., production.yaml):

# production.yaml
args:
  world_size: 8
  compile_backend: torch-opt
  max_batch_size: 32

benchmark:
  enabled: false

Then use these configurations:

# Using single YAML config
python build_and_run_ad.py \
  --model "meta-llama/Meta-Llama-3.1-8B-Instruct" \
  --yaml-configs my_config.yaml

# Using multiple YAML configs (deep merged in order, later files have higher priority)
python build_and_run_ad.py \
  --model "meta-llama/Meta-Llama-3.1-8B-Instruct" \
  --yaml-configs my_config.yaml production.yaml

# Targeting nested AutoDeployConfig with separate YAML
python build_and_run_ad.py \
  --model "meta-llama/Meta-Llama-3.1-8B-Instruct" \
  --yaml-configs my_config.yaml \
  --args.yaml-configs autodeploy_overrides.yaml

Configuration Precedence and Deep Merging#

The configuration system follows a precedence order in which higher priority sources override lower priority ones:

  1. CLI Arguments (highest priority) - Direct command line arguments

  2. YAML Configs - Files specified via --yaml-configs and --args.yaml-configs

  3. Default Settings (lowest priority) - Built-in defaults from the config classes

Deep Merging: Unlike simple overwriting, deep merging recursively combines nested dictionaries. For example:

# Base config
args:
  model_kwargs:
    num_hidden_layers: 10
    hidden_size: 1024
  max_seq_len: 2048
# Override config
args:
  model_kwargs:
    hidden_size: 2048  # This will override
    # num_hidden_layers: 10 remains unchanged
  world_size: 4  # This gets added

Nested Config Behavior: When using nested configurations, outer YAML configuration files become initialization settings for inner objects, giving them higher precedence:

# The outer yaml-configs affects the entire ExperimentConfig
# The inner args.yaml-configs affects only the AutoDeployConfig
python build_and_run_ad.py \
  --model "meta-llama/Meta-Llama-3.1-8B-Instruct" \
  --yaml-configs experiment_config.yaml \
  --args.yaml-configs autodeploy_config.yaml \
  --args.world-size=8  # CLI override beats both YAML configs

Built-in Default Configuration#

Both AutoDeployConfig and LlmArgs classes automatically load a built-in default.yaml configuration file that provides defaults for the AutoDeploy inference optimizer pipeline. This file is specified in the _get_config_dict() function in tensorrt_llm._torch.auto_deploy.llm_args and defines default transform configurations for graph optimization stages.

The built-in defaults are automatically merged with your configurations at the lowest priority level, ensuring that your custom settings always override the defaults. You can inspect the current default configuration to understand the baseline transform pipeline:

# View the default configuration
cat tensorrt_llm/_torch/auto_deploy/config/default.yaml

# Override specific transform settings
python build_and_run_ad.py \
  --model "TinyLlama/TinyLlama-1.1B-Chat-v1.0" \
  --args.transforms.export-to-gm.strict=true