Support Matrix#

AutoDeploy streamlines model deployment with an automated workflow designed for efficiency and performance. The workflow begins with a PyTorch model, which is exported using torch.export to generate a standard Torch graph. This graph contains core PyTorch ATen operations alongside custom attention operations, determined by the attention backend specified in the configuration.

The exported graph then undergoes a series of automated transformations, including graph sharding, KV-cache insertion, and GEMM fusion, to optimize model performance. After these transformations, the graph is compiled using one of the supported compile backends (like torch-opt), followed by deploying it via the TRT-LLM runtime.

Support Models#

Bring Your Own Model: AutoDeploy leverages torch.export and dynamic graph pattern matching, enabling seamless integration for a wide variety of models without relying on hard-coded architectures.

AutoDeploy supports Hugging Face models compatible with AutoModelForCausalLM and AutoModelForImageTextToText. In addition, the following models have been officially validated using the default configuration: runtime=trtllm, compile_backend=torch-compile, and attn_backend=flashinfer

Click to expand supported models list
  • Qwen/QwQ-32B

  • Qwen/Qwen2.5-0.5B-Instruct

  • Qwen/Qwen2.5-1.5B-Instruct

  • Qwen/Qwen2.5-3B-Instruct

  • Qwen/Qwen2.5-7B-Instruct

  • Qwen/Qwen3-0.6B

  • Qwen/Qwen3-235B-A22B

  • Qwen/Qwen3-30B-A3B

  • Qwen/Qwen3-4B

  • Qwen/Qwen3-8B

  • TinyLlama/TinyLlama-1.1B-Chat-v1.0

  • apple/OpenELM-1_1B-Instruct

  • apple/OpenELM-270M-Instruct

  • apple/OpenELM-3B-Instruct

  • apple/OpenELM-450M-Instruct

  • bigcode/starcoder2-15b-instruct-v0.1

  • bigcode/starcoder2-7b

  • deepseek-ai/DeepSeek-Prover-V1.5-SFT

  • deepseek-ai/DeepSeek-Prover-V2-7B

  • deepseek-ai/DeepSeek-R1-Distill-Llama-70B

  • deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

  • deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

  • google/codegemma-7b-it

  • google/gemma-1.1-7b-it

  • google/gemma-2-27b-it

  • google/gemma-2-2b-it

  • google/gemma-2-9b-it

  • google/gemma-2b

  • google/gemma-3-1b-it

  • ibm-granite/granite-3.1-2b-instruct

  • ibm-granite/granite-3.1-8b-instruct

  • ibm-granite/granite-3.3-2b-instruct

  • ibm-granite/granite-3.3-8b-instruct

  • ibm-granite/granite-guardian-3.1-2b

  • ibm-granite/granite-guardian-3.2-5b

  • meta-llama/CodeLlama-34b-Instruct-hf

  • meta-llama/CodeLlama-7b-Instruct-hf

  • meta-llama/CodeLlama-7b-Python-hf

  • meta-llama/Llama-2-13b-chat-hf

  • meta-llama/Llama-2-7b-chat-hf

  • meta-llama/Llama-3.1-8B-Instruct

  • meta-llama/Llama-3.2-1B-Instruct

  • meta-llama/Llama-3.2-3B-Instruct

  • meta-llama/Llama-3.3-70B-Instruct

  • meta-llama/Llama-4-Maverick-17B-128E-Instruct

  • meta-llama/Llama-4-Scout-17B-16E-Instruct

  • microsoft/Phi-3-medium-128k-instruct

  • microsoft/Phi-3-medium-4k-instruct

  • microsoft/Phi-4-mini-instruct

  • microsoft/Phi-4-mini-reasoning

  • microsoft/Phi-4-reasoning

  • microsoft/Phi-4-reasoning-plus

  • microsoft/phi-4

  • mistralai/Codestral-22B-v0.1

  • mistralai/Mistral-7B-Instruct-v0.2

  • mistralai/Mistral-7B-Instruct-v0.3

  • mistralai/Mixtral-8x22B-Instruct-v0.1

  • nvidia/Llama-3.1-405B-Instruct-FP8

  • nvidia/Llama-3.1-70B-Instruct-FP8

  • nvidia/Llama-3.1-8B-Instruct-FP8

  • nvidia/Llama-3.1-Minitron-4B-Depth-Base

  • nvidia/Llama-3.1-Minitron-4B-Width-Base

  • nvidia/Llama-3.1-Nemotron-70B-Instruct-HF

  • nvidia/Llama-3.1-Nemotron-Nano-8B-v1

  • nvidia/Llama-3_1-Nemotron-51B-Instruct

  • nvidia/Llama-3_1-Nemotron-Ultra-253B-v1

  • nvidia/Llama-3_1-Nemotron-Ultra-253B-v1-FP8

  • nvidia/Llama-3_3-Nemotron-Super-49B-v1

  • nvidia/Mistral-NeMo-Minitron-8B-Base

  • perplexity-ai/r1-1776-distill-llama-70b

Runtime Integrations#

AutoDeploy runs natively with the complete TRT-LLM stack via the LLM API. In addition, we provide a light-weight wrapper of the LLM API for onboarding and debugging new models:

"runtime"

Description

trtllm

A robust, production-grade runtime optimized for high-performance inference.

demollm

A lightweight runtime wrapper designed for development and testing, featuring a naive scheduler and KV-cache manager for simplified debugging and testing.

Compile Backends#

AutoDeploy supports multiple backends for compiling the exported Torch graph:

"compile_backend"

Description

torch-simple

Exports the graph without additional optimizations.

torch-compile

Applies torch.compile to the graph after all AutoDeploy transformations have been completed.

torch-cudagraph

Performs CUDA graph capture (without torch.compile).

torch-opt

Uses torch.compile along with CUDA Graph capture to enhance inference performance.

Attention backends#

Optimize attention operations with different attention kernel implementations:

"attn_backend"

Description

triton

Custom fused multi-head attention (MHA) with KV Cache kernels for efficient attention processing.

flashinfer

Uses optimized attention kernels with KV Cache from the flashinfer library.

Precision Support#

AutoDeploy supports models with various precision formats, including quantized checkpoints generated by TensorRT-Model-Optimizer.

Supported precision types include:

  • BF16 / FP16 / FP32

  • FP8

  • NVFP4