Support Matrix#
AutoDeploy streamlines model deployment with an automated workflow designed for efficiency and performance. The workflow begins with a PyTorch model, which is exported using torch.export
to generate a standard Torch graph. This graph contains core PyTorch ATen operations alongside custom attention operations, determined by the attention backend specified in the configuration.
The exported graph then undergoes a series of automated transformations, including graph sharding, KV-cache insertion, and GEMM fusion, to optimize model performance. After these transformations, the graph is compiled using one of the supported compile backends (like torch-opt
), followed by deploying it via the TRT-LLM runtime.
Support Models#
Bring Your Own Model: AutoDeploy leverages torch.export
and dynamic graph pattern matching, enabling seamless integration for a wide variety of models without relying on hard-coded architectures.
AutoDeploy supports Hugging Face models compatible with AutoModelForCausalLM
and AutoModelForImageTextToText
.
In addition, the following models have been officially validated using the default configuration: runtime=trtllm
, compile_backend=torch-compile
, and attn_backend=flashinfer
Click to expand supported models list
Qwen/QwQ-32B
Qwen/Qwen2.5-0.5B-Instruct
Qwen/Qwen2.5-1.5B-Instruct
Qwen/Qwen2.5-3B-Instruct
Qwen/Qwen2.5-7B-Instruct
Qwen/Qwen3-0.6B
Qwen/Qwen3-235B-A22B
Qwen/Qwen3-30B-A3B
Qwen/Qwen3-4B
Qwen/Qwen3-8B
TinyLlama/TinyLlama-1.1B-Chat-v1.0
apple/OpenELM-1_1B-Instruct
apple/OpenELM-270M-Instruct
apple/OpenELM-3B-Instruct
apple/OpenELM-450M-Instruct
bigcode/starcoder2-15b-instruct-v0.1
bigcode/starcoder2-7b
deepseek-ai/DeepSeek-Prover-V1.5-SFT
deepseek-ai/DeepSeek-Prover-V2-7B
deepseek-ai/DeepSeek-R1-Distill-Llama-70B
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
google/codegemma-7b-it
google/gemma-1.1-7b-it
google/gemma-2-27b-it
google/gemma-2-2b-it
google/gemma-2-9b-it
google/gemma-2b
google/gemma-3-1b-it
ibm-granite/granite-3.1-2b-instruct
ibm-granite/granite-3.1-8b-instruct
ibm-granite/granite-3.3-2b-instruct
ibm-granite/granite-3.3-8b-instruct
ibm-granite/granite-guardian-3.1-2b
ibm-granite/granite-guardian-3.2-5b
meta-llama/CodeLlama-34b-Instruct-hf
meta-llama/CodeLlama-7b-Instruct-hf
meta-llama/CodeLlama-7b-Python-hf
meta-llama/Llama-2-13b-chat-hf
meta-llama/Llama-2-7b-chat-hf
meta-llama/Llama-3.1-8B-Instruct
meta-llama/Llama-3.2-1B-Instruct
meta-llama/Llama-3.2-3B-Instruct
meta-llama/Llama-3.3-70B-Instruct
meta-llama/Llama-4-Maverick-17B-128E-Instruct
meta-llama/Llama-4-Scout-17B-16E-Instruct
microsoft/Phi-3-medium-128k-instruct
microsoft/Phi-3-medium-4k-instruct
microsoft/Phi-4-mini-instruct
microsoft/Phi-4-mini-reasoning
microsoft/Phi-4-reasoning
microsoft/Phi-4-reasoning-plus
microsoft/phi-4
mistralai/Codestral-22B-v0.1
mistralai/Mistral-7B-Instruct-v0.2
mistralai/Mistral-7B-Instruct-v0.3
mistralai/Mixtral-8x22B-Instruct-v0.1
nvidia/Llama-3.1-405B-Instruct-FP8
nvidia/Llama-3.1-70B-Instruct-FP8
nvidia/Llama-3.1-8B-Instruct-FP8
nvidia/Llama-3.1-Minitron-4B-Depth-Base
nvidia/Llama-3.1-Minitron-4B-Width-Base
nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
nvidia/Llama-3.1-Nemotron-Nano-8B-v1
nvidia/Llama-3_1-Nemotron-51B-Instruct
nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
nvidia/Llama-3_1-Nemotron-Ultra-253B-v1-FP8
nvidia/Llama-3_3-Nemotron-Super-49B-v1
nvidia/Mistral-NeMo-Minitron-8B-Base
perplexity-ai/r1-1776-distill-llama-70b
Runtime Integrations#
AutoDeploy runs natively with the complete TRT-LLM
stack via the LLM
API. In addition, we provide a light-weight wrapper of the LLM
API for onboarding and debugging new models:
|
Description |
---|---|
|
A robust, production-grade runtime optimized for high-performance inference. |
|
A lightweight runtime wrapper designed for development and testing, featuring a naive scheduler and KV-cache manager for simplified debugging and testing. |
Compile Backends#
AutoDeploy supports multiple backends for compiling the exported Torch graph:
|
Description |
---|---|
|
Exports the graph without additional optimizations. |
|
Applies |
|
Performs CUDA graph capture (without torch.compile). |
|
Uses |
Attention backends#
Optimize attention operations with different attention kernel implementations:
|
Description |
---|---|
|
Custom fused multi-head attention (MHA) with KV Cache kernels for efficient attention processing. |
|
Uses optimized attention kernels with KV Cache from the |
Precision Support#
AutoDeploy supports models with various precision formats, including quantized checkpoints generated by TensorRT-Model-Optimizer
.
Supported precision types include:
BF16 / FP16 / FP32
FP8