Kernel Reference#
Scalar Types#
Vector Types#
Generic Types#
- class warp.Int#
- class warp.Float#
- class warp.Scalar#
- class warp.Vector#
- class warp.Matrix#
- class warp.Quaternion#
- class warp.Transformation#
- class warp.Array#
Scalar Math#
- warp.clamp(x: Scalar, low: Scalar, high: Scalar) Scalar #
Clamp the value of
x
to the range [low, high].
- warp.abs(x: Vector[Any, Scalar]) Vector[Any, Scalar]
Return the absolute values of the elements of
x
.
- warp.acos(x: Float) Float #
Return arccos of
x
in radians. Inputs are automatically clamped to [-1.0, 1.0].
- warp.asin(x: Float) Float #
Return arcsin of
x
in radians. Inputs are automatically clamped to [-1.0, 1.0].
- warp.atan2(y: Float, x: Float) Float #
Return the 2-argument arctangent, atan2, of the point
(x, y)
in radians.
- warp.round(x: Float) Float #
Return the nearest integer value to
x
, rounding halfway cases away from zero.This is the most intuitive form of rounding in the colloquial sense, but can be slower than other options like
warp.rint()
. Differs fromnumpy.round()
, which behaves the same way asnumpy.rint()
.
- warp.rint(x: Float) Float #
Return the nearest integer value to
x
, rounding halfway cases to nearest even integer.It is generally faster than
warp.round()
. Equivalent tonumpy.rint()
.
- warp.trunc(x: Float) Float #
Return the nearest integer that is closer to zero than
x
.In other words, it discards the fractional part of
x
. It is similar to castingfloat(int(a))
, but preserves the negative sign whenx
is in the range [-0.0, -1.0). Equivalent tonumpy.trunc()
andnumpy.fix()
.
- warp.frac(x: Float) Float #
Retrieve the fractional part of
x
.In other words, it discards the integer part of
x
and is equivalent tox - trunc(x)
.
- warp.isfinite(a: Vector[Any, Scalar]) bool
Return
True
if all elements of the vectora
are finite, otherwise returnFalse
.
- warp.isfinite(a: Quaternion[Scalar]) bool
Return
True
if all elements of the quaterniona
are finite, otherwise returnFalse
.
- warp.isfinite(a: Matrix[Any, Any, Scalar]) bool
Return
True
if all elements of the matrixa
are finite, otherwise returnFalse
.
- warp.isnan(a: Vector[Any, Scalar]) bool
Return
True
if any element of the vectora
is NaN, otherwise returnFalse
.
- warp.isnan(a: Quaternion[Scalar]) bool
Return
True
if any element of the quaterniona
is NaN, otherwise returnFalse
.
- warp.isnan(a: Matrix[Any, Any, Scalar]) bool
Return
True
if any element of the matrixa
is NaN, otherwise returnFalse
.
- warp.isinf(a: Scalar) bool #
Return
True
ifa
is positive or negative infinity, otherwise returnFalse
.
- warp.isinf(a: Vector[Any, Scalar]) bool
Return
True
if any element of the vectora
is positive or negative infinity, otherwise returnFalse
.
- warp.isinf(a: Quaternion[Scalar]) bool
Return
True
if any element of the quaterniona
is positive or negative infinity, otherwise returnFalse
.
Vector Math#
- warp.dot(a: Vector[Any, Scalar], b: Vector[Any, Scalar]) Scalar #
Compute the dot product between two vectors.
- warp.dot(a: Quaternion[Float], b: Quaternion[Float]) Float
Compute the dot product between two quaternions.
- warp.ddot(a: Matrix[Any, Any, Scalar], b: Matrix[Any, Any, Scalar]) Scalar #
Compute the double dot product between two matrices.
- warp.argmin(a: Vector[Any, Scalar]) uint32 #
Return the index of the minimum element of a vector
a
. [1]
- warp.argmax(a: Vector[Any, Scalar]) uint32 #
Return the index of the maximum element of a vector
a
. [1]
- warp.cross(a: Vector[3, Scalar], b: Vector[3, Scalar]) Vector[3, Scalar] #
Compute the cross product of two 3D vectors.
- warp.skew(vec: Vector[3, Scalar]) Matrix[3, 3, Scalar] #
Compute the skew-symmetric 3x3 matrix for a 3D vector
vec
.
- warp.length(a: Quaternion[Float]) Float
Compute the length of a quaternion
a
.
- warp.length_sq(a: Quaternion[Scalar]) Scalar
Compute the squared length of a quaternion
a
.
- warp.normalize(a: Vector[Any, Float]) Vector[Any, Float] #
Compute the normalized value of
a
. Iflength(a)
is 0 then the zero vector is returned.
- warp.normalize(a: Quaternion[Float]) Quaternion[Float]
Compute the normalized value of
a
. Iflength(a)
is 0, then the zero quaternion is returned.
- warp.transpose(a: Matrix[Any, Any, Scalar]) Matrix[Any, Any, Scalar] #
Return the transpose of the matrix
a
.
- warp.inverse(a: Matrix[2, 2, Float]) Matrix[Any, Any, Float] #
Return the inverse of a 2x2 matrix
a
.
- warp.diag(vec: Vector[Any, Scalar]) Matrix[Any, Any, Scalar] #
Returns a matrix with the components of the vector
vec
on the diagonal.
- warp.get_diag(mat: Matrix[Any, Any, Scalar]) Vector[Any, Scalar] #
Returns a vector containing the diagonal elements of the square matrix
mat
.
- warp.matrix( ) Matrix[4, 4, Float] #
Construct a 4x4 transformation matrix that applies the transformations as Translation(pos)*Rotation(rot)*Scaling(scale) when applied to column vectors, i.e.: y = (TRS)*x
- warp.matrix( ) Matrix[Any, Any, Scalar]
Construct a matrix. If the positional
arg_types
are not given, then matrix will be zero-initialized.
- warp.identity(n: int32, dtype: Scalar) Matrix[Any, Any, Scalar] #
Create an identity matrix with shape=(n,n) with the type given by
dtype
.
- warp.svd3( ) None #
Compute the SVD of a 3x3 matrix
A
. The singular values are returned insigma
, while the left and right basis vectors are returned inU
andV
.
Quaternion Math#
- warp.quaternion(dtype: Float) Quaternion[Float] #
Construct a zero-initialized quaternion. Quaternions are laid out as [ix, iy, iz, r], where ix, iy, iz are the imaginary part, and r the real part.
- warp.quaternion( ) Quaternion[Float]
Create a quaternion using the supplied components (type inferred from component type).
- warp.quaternion( ) Quaternion[Float]
Create a quaternion using the supplied vector/scalar (type inferred from scalar type).
- warp.quaternion(quat: Quaternion[Float], dtype: Float) Quaternion[Float]
Construct a quaternion of type dtype from another quaternion of a different dtype.
- warp.quat_identity(dtype: Float) quatf #
Construct an identity quaternion with zero imaginary part and real part of 1.0
- warp.quat_from_axis_angle( ) Quaternion[Float] #
Construct a quaternion representing a rotation of angle radians around the given axis.
- warp.quat_to_axis_angle(
- quat: Quaternion[Float],
- axis: Vector[3, Float],
- angle: Float,
Extract the rotation axis and angle radians a quaternion represents.
- warp.quat_from_matrix(mat: Matrix[3, 3, Float]) Quaternion[Float] #
Construct a quaternion from a 3x3 matrix.
- warp.quat_rpy(roll: Float, pitch: Float, yaw: Float) Quaternion[Float] #
Construct a quaternion representing a combined roll (z), pitch (x), yaw rotations (y) in radians.
- warp.quat_inverse(quat: Quaternion[Float]) Quaternion[Float] #
Compute quaternion conjugate.
- warp.quat_rotate(
- quat: Quaternion[Float],
- vec: Vector[3, Float],
Rotate a vector by a quaternion.
- warp.quat_rotate_inv(
- quat: Quaternion[Float],
- vec: Vector[3, Float],
Rotate a vector by the inverse of a quaternion.
- warp.quat_slerp(
- a: Quaternion[Float],
- b: Quaternion[Float],
- t: Float,
Linearly interpolate between two quaternions.
- warp.quat_to_matrix(quat: Quaternion[Float]) Matrix[3, 3, Float] #
Convert a quaternion to a 3x3 rotation matrix.
Transformations#
- warp.transformation(
- pos: Vector[3, Float],
- rot: Quaternion[Float],
- dtype: Float,
Construct a rigid-body transformation with translation part
pos
and rotationrot
.
- warp.transform_identity(dtype: Float) transformf #
Construct an identity transform with zero translation and identity rotation.
- warp.transform_get_translation(
- xform: Transformation[Float],
Return the translational part of a transform
xform
.
- warp.transform_get_rotation(
- xform: Transformation[Float],
Return the rotational part of a transform
xform
.
- warp.transform_multiply(
- a: Transformation[Float],
- b: Transformation[Float],
Multiply two rigid body transformations together.
- warp.transform_point(
- xform: Transformation[Float],
- point: Vector[3, Float],
Apply the transform to a point
point
treating the homogeneous coordinate as w=1 (translation and rotation).
- warp.transform_point( ) Vector[3, Float]
Apply the transform to a point
point
treating the homogeneous coordinate as w=1.The transformation is applied treating
point
as a column vector, e.g.:y = mat*point
.This is in contrast to some libraries, notably USD, which applies transforms to row vectors,
y^T = point^T*mat^T
. If the transform is coming from a library that uses row-vectors, then users should transpose the transformation matrix before calling this method.
- warp.transform_vector(
- xform: Transformation[Float],
- vec: Vector[3, Float],
Apply the transform to a vector
vec
treating the homogeneous coordinate as w=0 (rotation only).
- warp.transform_vector( ) Vector[3, Float]
Apply the transform to a vector
vec
treating the homogeneous coordinate as w=0.The transformation is applied treating
vec
as a column vector, e.g.:y = mat*vec
.This is in contrast to some libraries, notably USD, which applies transforms to row vectors,
y^T = vec^T*mat^T
. If the transform is coming from a library that uses row-vectors, then users should transpose the transformation matrix before calling this method.
- warp.transform_inverse(
- xform: Transformation[Float],
Compute the inverse of the transformation
xform
.
Spatial Math#
- warp.spatial_adjoint( ) Matrix[6, 6, Float] #
Construct a 6x6 spatial inertial matrix from two 3x3 diagonal blocks.
- warp.spatial_dot(a: Vector[6, Float], b: Vector[6, Float]) Float #
Compute the dot product of two 6D screw vectors.
- warp.spatial_cross_dual( ) Vector[6, Float] #
Compute the dual cross product of two 6D screw vectors.
- warp.spatial_top(svec: Vector[6, Float]) Vector[3, Float] #
Return the top (first) part of a 6D screw vector.
- warp.spatial_bottom(svec: Vector[6, Float]) Vector[3, Float] #
Return the bottom (second) part of a 6D screw vector.
Tile Primitives#
- warp.tile_zeros(m: int32, n: int32, dtype: Any, storage: str) Tile #
Allocates a tile of zero-initialized items.
- Parameters:
m – Size of the first dimension of the output tile
n – Size of the second dimension of the output tile
dtype – Datatype of output tile’s elements
storage – The storage location for the tile:
"register"
for registers (default) or"shared"
for shared memory.
- Returns:
A zero-initialized tile with
shape=(m,n)
and the specified datatype [1]
- warp.tile_ones(m: int32, n: int32, dtype: Any, storage: str) Tile #
Allocates a tile of one-initialized items.
- Parameters:
m – Size of the first dimension of the output tile
n – Size of the second dimension of the output tile
dtype – Datatype of output tile’s elements
storage – The storage location for the tile:
"register"
for registers (default) or"shared"
for shared memory.
- Returns:
A one-initialized tile with
shape=(m,n)
and the specified dtype [1]
- warp.tile_arange(*args: Scalar, dtype: Any, storage: str) Tile #
Generates a tile of linearly spaced elements.
- Parameters:
args –
Variable-length positional arguments, interpreted as:
(stop,)
: Generates values from0
tostop - 1
(start, stop)
: Generates values fromstart
tostop - 1
(start, stop, step)
: Generates values fromstart
tostop - 1
with a step size
dtype – Datatype of output tile’s elements (optional, default: int)
storage – The storage location for the tile:
"register"
for registers (default) or"shared"
for shared memory.
- Returns:
A tile with
shape=(1,n)
with linearly spaced elements of specified dtype [1]
- warp.tile_load(a: Array[Any], i: int32, n: int32, storage: str) Tile #
Loads a 1D tile from a global memory array.
This method will cooperatively load a tile from global memory using all threads in the block.
- Parameters:
a – The source array in global memory
i – Offset in the source array measured in multiples of
n
, i.e.:offset=i*n
n – The number of elements in the tile
storage – The storage location for the tile:
"register"
for registers (default) or"shared"
for shared memory.
- Returns:
A tile with
shape=(1,n)
and dtype the same as the source array
- warp.tile_load( ) Tile
Loads a 2D tile from a global memory array.
This method will cooperatively load a tile from global memory using all threads in the block.
- Parameters:
a – The source array in global memory
i – Offset in the source array measured in multiples of
m
, i.e.:row=i*m
j – Offset in the source array measured in multiples of
n
, i.e.;col=j*n
m – The size of the tile’s first dimension
n – The size of the tile’s second dimension
storage – The storage location for the tile:
"register"
for registers (default) or"shared"
for shared memory.
- Returns:
A tile with
shape=(m,n)
and dtype the same as the source array
- warp.tile_store(a: Array[Any], i: int32, t: Any) None #
Stores a 1D tile to a global memory array.
This method will cooperatively store a tile to global memory using all threads in the block.
- Parameters:
a – The destination array in global memory
i – Offset in the destination array measured in multiples of
n
, i.e.:offset=i*n
t – The source tile to store data from, must have the same dtype as the destination array
- warp.tile_store(a: Array[Any], i: int32, j: int32, t: Any) None
Stores a tile to a global memory array.
This method will cooperatively store a tile to global memory using all threads in the block.
- Parameters:
a – The destination array in global memory
i – Offset in the destination array measured in multiples of
m
, i.e.:row=i*m
j – Offset in the destination array measured in multiples of
n
, i.e.;col=j*n
t – The source tile to store data from, must have the same dtype as the destination array
- warp.tile_atomic_add(a: Array[Any], x: int32, y: int32, t: Any) Tile #
Atomically add a tile to the array a, each element will be updated atomically.
- Parameters:
a – Array in global memory, should have the same
dtype
as the input tilex – Offset in the destination array measured in multiples of
m
, i.e.:i=x*M
whereM
is the first tile dimensiony – Offset in the destination array measured in multiples of
n
, i.e.:j=y*N
whereN
is the second tile dimensiont – Source tile to add to the destination array
- Returns:
A tile with the same dimensions and type as the source tile, holding the original value of the destination elements
- warp.tile_view(t: Tile, i: int32, j: int32, m: int32, n: int32) Tile #
Return a subrange of a given tile from coordinates (i,j) to (i+m, j+n).
- Parameters:
t – Input tile to extract a subrange from
i – Offset in the source tile along the first dimension
j – Offset in the source tile along the second dimensions
m – Size of the subrange to return along the first dimension
n – Size of the subrange to return along the second dimension
- Returns:
A tile with dimensions (m,n) and the same datatype as the input tile
- warp.tile_assign(dst: Tile, i: int32, j: int32, src: Tile) None #
Assign a tile to a subrange of a destination tile at coordinates (i,j).
- Parameters:
t – The destination tile to assign to
i – Offset in the source tile along the first dimension
j – Offset in the source tile along the second dimensions
src – The source tile to read values from
- warp.tile(x: Any) Tile #
Constructs a new Tile from per-thread kernel values.
This function converts values computed using scalar kernel code to a tile representation for input into collective operations.
If the input value is a scalar, then the resulting tile has
shape=(1, block_dim)
If the input value is a vector, then the resulting tile has
shape=(length(vector), block_dim)
- Parameters:
x – A per-thread local value, e.g.: scalar, vector, or matrix.
- Returns:
A tile with first dimension according to the value type length and a second dimension equal to
block_dim
This example shows how to create a linear sequence from thread variables:
@wp.kernel def compute(): i = wp.tid() t = wp.tile(i*2) print(t) wp.launch(compute, dim=16, inputs=[], block_dim=16)
Prints:
tile(m=1, n=16, storage=register) = [[0 2 4 6 8 ...]]
- warp.untile(a: Any) Scalar #
Convert a Tile back to per-thread values.
This function converts a block-wide tile back to per-thread values.
If the input tile is 1-dimensional then the resulting value will be a per-thread scalar
If the input tile is 2-dimensional then the resulting value will be a per-thread vector of length M
- Parameters:
a – A tile with dimensions
shape=(M, block_dim)
- Returns:
A single value per-thread with the same dtype as the tile
This example shows how to create a linear sequence from thread variables:
@wp.kernel def compute(): i = wp.tid() # create block-wide tile t = wp.tile(i)*2 # convert back to per-thread values s = wp.untile() print(s) wp.launch(compute, dim=16, inputs=[], block_dim=16)
Prints:
0 2 4 6 8 ...
- warp.tile_extract(a: Tile, i: int32, j: int32) Scalar #
Extracts a single element from the tile and returns it as a scalar type.
This function will extract an element from the tile and broadcast its value to all threads in the block.
Note that this may incur additional synchronization if the source tile is a register tile.
- Parameters:
a – Tile to extract the element from
i – Coordinate of element on first dimension
j – Coordinate of element on the second dimension
- Returns:
The value of the element at the specified tile location, with the same type as the input tile’s per-element dtype
- warp.tile_transpose(a: Tile) Tile #
Transpose a tile.
For shared memory tiles this operation will alias the input tile, register tiles will first be transferred to shared memory before transposition.
- Parameters:
a – Tile to transpose with
shape=(M,N)
- Returns:
Tile with
shape=(N,M)
- warp.tile_broadcast(a: Tile, m: int32, n: int32) Tile #
Broadcast a tile.
This method will attempt to broadcast the input tile
a
to the destination shape (m, n), broadcasting follows NumPy broadcast rules.- Parameters:
a – Tile to broadcast
- Returns:
Tile with broadcast
shape=(m, n)
- warp.tile_sum(a: Tile) Tile #
Cooperatively compute the sum of the tile elements using all threads in the block.
- Parameters:
a – The tile to compute the sum of
- Returns:
A single-element tile with dimensions of (1,1) holding the sum
Example:
@wp.kernel def compute(): t = wp.tile_ones(dtype=float, m=16, n=16) s = wp.tile_sum(t) print(t) wp.launch(compute, dim=[64], inputs=[])
Prints:
tile(m=1, n=1, storage=register) = [[256]]
- warp.tile_min(a: Tile) Tile #
Cooperatively compute the minimum of the tile elements using all threads in the block.
- Parameters:
a – The tile to compute the minimum of
- Returns:
A single-element tile with dimensions of (1,1) holding the minimum value
Example:
@wp.kernel def compute(): t = wp.tile_arange(start=--10, stop=10, dtype=float) s = wp.tile_min(t) print(t) wp.launch(compute, dim=[64], inputs=[])
Prints:
tile(m=1, n=1, storage=register) = [[-10]]
- warp.tile_max(a: Tile) Tile #
Cooperatively compute the maximum of the tile elements using all threads in the block.
- Parameters:
a – The tile to compute the maximum from
- Returns:
A single-element tile with dimensions of (1,1) holding the maximum value
Example:
@wp.kernel def compute(): t = wp.tile_arange(start=--10, stop=10, dtype=float) s = wp.tile_min(t) print(t) wp.launch(compute, dim=[64], inputs=[])
Prints:
tile(m=1, n=1, storage=register) = [[10]]
- warp.tile_reduce(op: Callable, a: Any) Tile #
Apply a custom reduction operator across the tile.
This function cooperatively performs a reduction using the provided operator across the tile.
- Parameters:
op – A callable function that accepts two arguments and returns one argument, may be a user function or builtin
a – The input tile, the operator (or one of its overloads) must be able to accept the tile’s dtype
- Returns:
A single-element tile with
shape=(1,1)
with the same datatype as the input tile.
Example:
@wp.kernel def factorial(): t = wp.tile_arange(1, 10, dtype=int) s = wp.tile_reduce(wp.mul, t) print(s) wp.launch(factorial, dim=[16], inputs=[], block_dim=16)
Prints:
tile(m=1, n=1, storage=register) = [[362880]]
- warp.tile_map(op: Callable, a: Any) Tile #
Apply a unary function onto the tile.
This function cooperatively applies a unary function to each element of the tile using all threads in the block.
- Parameters:
op – A callable function that accepts one argument and returns one argument, may be a user function or builtin
a – The input tile, the operator (or one of its overloads) must be able to accept the tile’s dtype
- Returns:
A tile with the same dimensions and datatype as the input tile.
Example:
@wp.kernel def compute(): t = wp.tile_arange(0.0, 1.0, 0.1, dtype=float) s = wp.tile_map(wp.sin, t) print(s) wp.launch(compute, dim=[16], inputs=[])
Prints:
tile(m=1, n=10, storage=register) = [[0 0.0998334 0.198669 0.29552 ...]]
- warp.tile_map(op: Callable, a: Any, b: Any) Tile
Apply a binary function onto the tile.
This function cooperatively applies a binary function to each element of the tiles using all threads in the block. Both input tiles must have the same dimensions and datatype.
- Parameters:
op – A callable function that accepts two arguments and returns one argument, all of the same type, may be a user function or builtin
a – The first input tile, the operator (or one of its overloads) must be able to accept the tile’s dtype
b – The second input tile, the operator (or one of its overloads) must be able to accept the tile’s dtype
- Returns:
A tile with the same dimensions and datatype as the input tiles.
Example:
@wp.kernel def compute(): a = wp.tile_arange(0.0, 1.0, 0.1, dtype=float) b = wp.tile_ones(m=1, n=10, dtype=float) s = wp.tile_map(wp.add, a, b) print(s) wp.launch(compute, dim=[16], inputs=[])
Prints:
tile(m=1, n=10, storage=register) = [[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9]]
- warp.tile_matmul(a: Tile, b: Tile, out: Tile) Tile #
Computes the matrix product and accumulates
out += a*b
.- Supported datatypes are:
fp16, fp32, fp64 (real)
vec2h, vec2f, vec2d (complex)
All input and output tiles must have the same datatype. Tile data will be automatically be migrated to shared memory if necessary and will use TensorCore operations when available.
- Parameters:
a – A tile with
shape=(M, K)
b – A tile with
shape=(K, N)
out – A tile with
shape=(M, N)
- warp.tile_matmul(a: Tile, b: Tile) Tile
Computes the matrix product
out = a*b
.- Supported datatypes are:
fp16, fp32, fp64 (real)
vec2h, vec2f, vec2d (complex)
Both input tiles must have the same datatype. Tile data will be automatically be migrated to shared memory if necessary and will use TensorCore operations when available.
- Parameters:
a – A tile with
shape=(M, K)
b – A tile with
shape=(K, N)
- Returns:
A tile with
shape=(M, N)
- warp.tile_fft(inout: Tile) Tile #
Compute the forward FFT along the second dimension of a 2D tile of data.
This function cooperatively computes the forward FFT on a tile of data inplace, treating each row individually.
- Supported datatypes are:
vec2f, vec2d
- Parameters:
inout – The input/output tile
- warp.tile_ifft(inout: Tile) Tile #
Compute the inverse FFT along the second dimension of a 2D tile of data.
This function cooperatively computes the inverse FFT on a tile of data inplace, treating each row individually.
- Supported datatypes are:
vec2f, vec2d
- Parameters:
inout – The input/output tile
Utility#
- warp.mlp(
- weights: Array[float32],
- bias: Array[float32],
- activation: Callable,
- index: int32,
- x: Array[float32],
- out: Array[float32],
Evaluate a multi-layer perceptron (MLP) layer in the form:
out = act(weights*x + bias)
.- Parameters:
weights – A layer’s network weights with dimensions
(m, n)
.bias – An array with dimensions
(n)
.activation – A
wp.func
function that takes a single scalar float as input and returns a scalar float as outputindex – The batch item to process, typically each thread will process one item in the batch, in which case index should be
wp.tid()
x – The feature matrix with dimensions
(n, b)
out – The network output with dimensions
(m, b)
- Note:
Feature and output matrices are transposed compared to some other frameworks such as PyTorch. All matrices are assumed to be stored in flattened row-major memory layout (NumPy default).
- warp.reversed(range: range_t) range_t #
Returns the range in reversed order.
- warp.printf(fmt: str, *args: Any) None #
Allows printing formatted strings using C-style format specifiers.
- warp.tid() int #
Return the current thread index for a 1D kernel launch.
Note that this is the global index of the thread in the range [0, dim) where dim is the parameter passed to kernel launch.
This function may not be called from user-defined Warp functions.
- warp.tid() Tuple[int, int]
Return the current thread indices for a 2D kernel launch.
Use
i,j = wp.tid()
syntax to retrieve the coordinates inside the kernel thread grid.This function may not be called from user-defined Warp functions.
- warp.tid() Tuple[int, int, int]
Return the current thread indices for a 3D kernel launch.
Use
i,j,k = wp.tid()
syntax to retrieve the coordinates inside the kernel thread grid.This function may not be called from user-defined Warp functions.
- warp.tid() Tuple[int, int, int, int]
Return the current thread indices for a 4D kernel launch.
Use
i,j,k,l = wp.tid()
syntax to retrieve the coordinates inside the kernel thread grid.This function may not be called from user-defined Warp functions.
- warp.select(cond: bool, value_if_false: Any, value_if_true: Any) Any #
Select between two arguments, if
cond
isFalse
then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.select(cond: int8, value_if_false: Any, value_if_true: Any) Any
Select between two arguments, if
cond
isFalse
then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.select(cond: uint8, value_if_false: Any, value_if_true: Any) Any
Select between two arguments, if
cond
isFalse
then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.select(cond: int16, value_if_false: Any, value_if_true: Any) Any
Select between two arguments, if
cond
isFalse
then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.select(cond: uint16, value_if_false: Any, value_if_true: Any) Any
Select between two arguments, if
cond
isFalse
then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.select(cond: int32, value_if_false: Any, value_if_true: Any) Any
Select between two arguments, if
cond
isFalse
then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.select(cond: uint32, value_if_false: Any, value_if_true: Any) Any
Select between two arguments, if
cond
isFalse
then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.select(cond: int64, value_if_false: Any, value_if_true: Any) Any
Select between two arguments, if
cond
isFalse
then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.select(cond: uint64, value_if_false: Any, value_if_true: Any) Any
Select between two arguments, if
cond
isFalse
then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.select(
- arr: Array[Any],
- value_if_false: Any,
- value_if_true: Any,
Select between two arguments, if
arr
is null then returnvalue_if_false
, otherwise returnvalue_if_true
- warp.atomic_add(arr: Array[Any], i: Int, value: Any) Any #
Atomically add
value
ontoarr[i]
and return the old value.
- warp.atomic_add(arr: Array[Any], i: Int, j: Int, value: Any) Any
Atomically add
value
ontoarr[i,j]
and return the old value.
- warp.atomic_add(arr: Array[Any], i: Int, j: Int, k: Int, value: Any) Any
Atomically add
value
ontoarr[i,j,k]
and return the old value.
- warp.atomic_add( ) Any
Atomically add
value
ontoarr[i,j,k,l]
and return the old value.
- warp.atomic_add(arr: FabricArray[Any], i: Int, value: Any) Any
Atomically add
value
ontoarr[i]
and return the old value.
- warp.atomic_add(arr: FabricArray[Any], i: Int, j: Int, value: Any) Any
Atomically add
value
ontoarr[i,j]
and return the old value.
- warp.atomic_add( ) Any
Atomically add
value
ontoarr[i,j,k]
and return the old value.
- warp.atomic_add( ) Any
Atomically add
value
ontoarr[i,j,k,l]
and return the old value.
- warp.atomic_add(arr: IndexedFabricArray[Any], i: Int, value: Any) Any
Atomically add
value
ontoarr[i]
and return the old value.
- warp.atomic_add( ) Any
Atomically add
value
ontoarr[i,j]
and return the old value.
- warp.atomic_add( ) Any
Atomically add
value
ontoarr[i,j,k]
and return the old value.
- warp.atomic_add( ) Any
Atomically add
value
ontoarr[i,j,k,l]
and return the old value.
- warp.atomic_sub(arr: Array[Any], i: Int, value: Any) Any #
Atomically subtract
value
ontoarr[i]
and return the old value.
- warp.atomic_sub(arr: Array[Any], i: Int, j: Int, value: Any) Any
Atomically subtract
value
ontoarr[i,j]
and return the old value.
- warp.atomic_sub(arr: Array[Any], i: Int, j: Int, k: Int, value: Any) Any
Atomically subtract
value
ontoarr[i,j,k]
and return the old value.
- warp.atomic_sub( ) Any
Atomically subtract
value
ontoarr[i,j,k,l]
and return the old value.
- warp.atomic_sub(arr: FabricArray[Any], i: Int, value: Any) Any
Atomically subtract
value
ontoarr[i]
and return the old value.
- warp.atomic_sub(arr: FabricArray[Any], i: Int, j: Int, value: Any) Any
Atomically subtract
value
ontoarr[i,j]
and return the old value.
- warp.atomic_sub( ) Any
Atomically subtract
value
ontoarr[i,j,k]
and return the old value.
- warp.atomic_sub( ) Any
Atomically subtract
value
ontoarr[i,j,k,l]
and return the old value.
- warp.atomic_sub(arr: IndexedFabricArray[Any], i: Int, value: Any) Any
Atomically subtract
value
ontoarr[i]
and return the old value.
- warp.atomic_sub( ) Any
Atomically subtract
value
ontoarr[i,j]
and return the old value.
- warp.atomic_sub( ) Any
Atomically subtract
value
ontoarr[i,j,k]
and return the old value.
- warp.atomic_sub( ) Any
Atomically subtract
value
ontoarr[i,j,k,l]
and return the old value.
- warp.atomic_min(arr: Array[Any], i: Int, value: Any) Any #
Compute the minimum of
value
andarr[i]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min(arr: Array[Any], i: Int, j: Int, value: Any) Any
Compute the minimum of
value
andarr[i,j]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min(arr: Array[Any], i: Int, j: Int, k: Int, value: Any) Any
Compute the minimum of
value
andarr[i,j,k]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min( ) Any
Compute the minimum of
value
andarr[i,j,k,l]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min(arr: FabricArray[Any], i: Int, value: Any) Any
Compute the minimum of
value
andarr[i]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min(arr: FabricArray[Any], i: Int, j: Int, value: Any) Any
Compute the minimum of
value
andarr[i,j]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min( ) Any
Compute the minimum of
value
andarr[i,j,k]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min( ) Any
Compute the minimum of
value
andarr[i,j,k,l]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min(arr: IndexedFabricArray[Any], i: Int, value: Any) Any
Compute the minimum of
value
andarr[i]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min( ) Any
Compute the minimum of
value
andarr[i,j]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min( ) Any
Compute the minimum of
value
andarr[i,j,k]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_min( ) Any
Compute the minimum of
value
andarr[i,j,k,l]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max(arr: Array[Any], i: Int, value: Any) Any #
Compute the maximum of
value
andarr[i]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max(arr: Array[Any], i: Int, j: Int, value: Any) Any
Compute the maximum of
value
andarr[i,j]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max(arr: Array[Any], i: Int, j: Int, k: Int, value: Any) Any
Compute the maximum of
value
andarr[i,j,k]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max( ) Any
Compute the maximum of
value
andarr[i,j,k,l]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max(arr: FabricArray[Any], i: Int, value: Any) Any
Compute the maximum of
value
andarr[i]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max(arr: FabricArray[Any], i: Int, j: Int, value: Any) Any
Compute the maximum of
value
andarr[i,j]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max( ) Any
Compute the maximum of
value
andarr[i,j,k]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max( ) Any
Compute the maximum of
value
andarr[i,j,k,l]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max(arr: IndexedFabricArray[Any], i: Int, value: Any) Any
Compute the maximum of
value
andarr[i]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max( ) Any
Compute the maximum of
value
andarr[i,j]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max( ) Any
Compute the maximum of
value
andarr[i,j,k]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.atomic_max( ) Any
Compute the maximum of
value
andarr[i,j,k,l]
, atomically update the array, and return the old value.The operation is only atomic on a per-component basis for vectors and matrices.
- warp.lerp(a: Float, b: Float, t: Float) Float #
Linearly interpolate two values
a
andb
using factort
, computed asa*(1-t) + b*t
- warp.lerp( ) Vector[Any, Float]
Linearly interpolate two values
a
andb
using factort
, computed asa*(1-t) + b*t
- warp.lerp( ) Matrix[Any, Any, Float]
Linearly interpolate two values
a
andb
using factort
, computed asa*(1-t) + b*t
- warp.lerp(
- a: Quaternion[Float],
- b: Quaternion[Float],
- t: Float,
Linearly interpolate two values
a
andb
using factort
, computed asa*(1-t) + b*t
- warp.lerp(
- a: Transformation[Float],
- b: Transformation[Float],
- t: Float,
Linearly interpolate two values
a
andb
using factort
, computed asa*(1-t) + b*t
- warp.smoothstep(a: Float, b: Float, x: Float) Float #
Smoothly interpolate between two values
a
andb
using a factorx
, and return a result between 0 and 1 using a cubic Hermite interpolation after clamping.
Geometry#
- warp.bvh_query_aabb(id: uint64, low: vec3f, high: vec3f) bvh_query_t #
Construct an axis-aligned bounding box query against a BVH object.
This query can be used to iterate over all bounds inside a BVH.
- Parameters:
id – The BVH identifier
low – The lower bound of the bounding box in BVH space
high – The upper bound of the bounding box in BVH space
- warp.bvh_query_ray(id: uint64, start: vec3f, dir: vec3f) bvh_query_t #
Construct a ray query against a BVH object.
This query can be used to iterate over all bounds that intersect the ray.
- Parameters:
id – The BVH identifier
start – The start of the ray in BVH space
dir – The direction of the ray in BVH space
- warp.bvh_query_next(query: bvh_query_t, index: int32) bool #
Move to the next bound returned by the query. The index of the current bound is stored in
index
, returnsFalse
if there are no more overlapping bound.
- warp.mesh_query_point( ) mesh_query_point_t #
Computes the closest point on the
Mesh
with identifierid
to the givenpoint
in space.Identifies the sign of the distance using additional ray-casts to determine if the point is inside or outside. This method is relatively robust, but does increase computational cost. See below for additional sign determination methods.
- Parameters:
id – The mesh identifier
point – The point in space to query
max_dist – Mesh faces above this distance will not be considered by the query
- warp.mesh_query_point_no_sign( ) mesh_query_point_t #
Computes the closest point on the
Mesh
with identifierid
to the givenpoint
in space.This method does not compute the sign of the point (inside/outside) which makes it faster than other point query methods.
- Parameters:
id – The mesh identifier
point – The point in space to query
max_dist – Mesh faces above this distance will not be considered by the query
- warp.mesh_query_furthest_point_no_sign( ) mesh_query_point_t #
Computes the furthest point on the mesh with identifier id to the given point in space.
This method does not compute the sign of the point (inside/outside).
- Parameters:
id – The mesh identifier
point – The point in space to query
min_dist – Mesh faces below this distance will not be considered by the query
- warp.mesh_query_point_sign_normal( ) mesh_query_point_t #
Computes the closest point on the
Mesh
with identifierid
to the givenpoint
in space.Identifies the sign of the distance (inside/outside) using the angle-weighted pseudo normal. This approach to sign determination is robust for well conditioned meshes that are watertight and non-self intersecting. It is also comparatively fast to compute.
- Parameters:
id – The mesh identifier
point – The point in space to query
max_dist – Mesh faces above this distance will not be considered by the query
epsilon – Epsilon treating distance values as equal, when locating the minimum distance vertex/face/edge, as a fraction of the average edge length, also for treating closest point as being on edge/vertex default 1e-3
- warp.mesh_query_point_sign_winding_number( ) mesh_query_point_t #
Computes the closest point on the
Mesh
with identifierid
to the given point in space.Identifies the sign using the winding number of the mesh relative to the query point. This method of sign determination is robust for poorly conditioned meshes and provides a smooth approximation to sign even when the mesh is not watertight. This method is the most robust and accurate of the sign determination meshes but also the most expensive.
Note
The
Mesh
object must be constructed withsupport_winding_number=True
for this method to return correct results.- Parameters:
id – The mesh identifier
point – The point in space to query
max_dist – Mesh faces above this distance will not be considered by the query
accuracy – Accuracy for computing the winding number with fast winding number method utilizing second-order dipole approximation, default 2.0
threshold – The threshold of the winding number to be considered inside, default 0.5
- warp.mesh_query_ray( ) mesh_query_ray_t #
Computes the closest ray hit on the
Mesh
with identifierid
.- Parameters:
id – The mesh identifier
start – The start point of the ray
dir – The ray direction (should be normalized)
max_t – The maximum distance along the ray to check for intersections
- warp.mesh_query_aabb( ) mesh_query_aabb_t #
Construct an axis-aligned bounding box query against a
Mesh
.This query can be used to iterate over all triangles inside a volume.
- Parameters:
id – The mesh identifier
low – The lower bound of the bounding box in mesh space
high – The upper bound of the bounding box in mesh space
- warp.mesh_query_aabb_next(query: mesh_query_aabb_t, index: int32) bool #
Move to the next triangle overlapping the query bounding box.
The index of the current face is stored in
index
, returnsFalse
if there are no more overlapping triangles.
- warp.mesh_eval_position( ) vec3f #
Evaluates the position on the
Mesh
given a face index and barycentric coordinates.
- warp.mesh_eval_velocity( ) vec3f #
Evaluates the velocity on the
Mesh
given a face index and barycentric coordinates.
- warp.hash_grid_query( ) hash_grid_query_t #
Construct a point query against a
HashGrid
.This query can be used to iterate over all neighboring point within a fixed radius from the query point.
- warp.hash_grid_query_next(query: hash_grid_query_t, index: int32) bool #
Move to the next point in the hash grid query.
The index of the current neighbor is stored in
index
, returnsFalse
if there are no more neighbors.
- warp.hash_grid_point_id(id: uint64, index: int32) int #
Return the index of a point in the
HashGrid
.This can be used to reorder threads such that grid traversal occurs in a spatially coherent order.
Returns -1 if the
HashGrid
has not been reserved.
- warp.intersect_tri_tri( ) int #
Tests for intersection between two triangles (v0, v1, v2) and (u0, u1, u2) using Moller’s method.
Returns > 0 if triangles intersect.
- warp.mesh_eval_face_normal(id: uint64, face: int32) vec3f #
Evaluates the face normal the mesh given a face index.
- warp.mesh_get_velocity(id: uint64, index: int32) vec3f #
Returns the velocity of the mesh given a index.
- warp.mesh_get_index(id: uint64, index: int32) int #
Returns the point-index of the mesh given a face-vertex index.
- warp.closest_point_edge_edge( ) vec3f #
Finds the closest points between two edges.
Returns barycentric weights to the points on each edge, as well as the closest distance between the edges.
- Parameters:
p1 – First point of first edge
q1 – Second point of first edge
p2 – First point of second edge
q2 – Second point of second edge
epsilon – Zero tolerance for determining if points in an edge are degenerate.
out – vec3 output containing (s,t,d), where s in [0,1] is the barycentric weight for the first edge, t is the barycentric weight for the second edge, and d is the distance between the two edges at these two closest points.
Volumes#
- warp.volume_sample( ) Any #
Sample the volume of type dtype given by
id
at the volume local-space pointuvw
.Interpolation should be
warp.Volume.CLOSEST
orwp.Volume.LINEAR.
- warp.volume_sample_grad( ) Any #
Sample the volume given by
id
and its gradient at the volume local-space pointuvw
.Interpolation should be
warp.Volume.CLOSEST
orwp.Volume.LINEAR.
- warp.volume_lookup( ) Any #
Returns the value of voxel with coordinates
i
,j
,k
for a volume of type type dtype.If the voxel at this index does not exist, this function returns the background value.
- warp.volume_sample_f(id: uint64, uvw: vec3f, sampling_mode: int32) float #
Sample the volume given by
id
at the volume local-space pointuvw
.Interpolation should be
warp.Volume.CLOSEST
orwp.Volume.LINEAR.
- warp.volume_sample_grad_f( ) float #
Sample the volume and its gradient given by
id
at the volume local-space pointuvw
.Interpolation should be
warp.Volume.CLOSEST
orwp.Volume.LINEAR.
- warp.volume_lookup_f(id: uint64, i: int32, j: int32, k: int32) float #
Returns the value of voxel with coordinates
i
,j
,k
.If the voxel at this index does not exist, this function returns the background value
- warp.volume_sample_v(id: uint64, uvw: vec3f, sampling_mode: int32) vec3f #
Sample the vector volume given by
id
at the volume local-space pointuvw
.Interpolation should be
warp.Volume.CLOSEST
orwp.Volume.LINEAR.
- warp.volume_lookup_v(id: uint64, i: int32, j: int32, k: int32) vec3f #
Returns the vector value of voxel with coordinates
i
,j
,k
.If the voxel at this index does not exist, this function returns the background value.
- warp.volume_sample_i(id: uint64, uvw: vec3f) int #
Sample the
int32
volume given byid
at the volume local-space pointuvw
.
- warp.volume_lookup_i(id: uint64, i: int32, j: int32, k: int32) int #
Returns the
int32
value of voxel with coordinatesi
,j
,k
.If the voxel at this index does not exist, this function returns the background value.
- warp.volume_sample_index( ) Any #
Sample the volume given by
id
at the volume local-space pointuvw
.Values for allocated voxels are read from the
voxel_data
array, and background is used as the value of non-existing voxels. Interpolation should bewarp.Volume.CLOSEST
orwp.Volume.LINEAR
. This function is available for both index grids and classical volumes.
- warp.volume_sample_grad_index( ) Any #
Sample the volume given by
id
and its gradient at the volume local-space pointuvw
.Values for allocated voxels are read from the
voxel_data
array, and background is used as the value of non-existing voxels. Interpolation should bewarp.Volume.CLOSEST
orwp.Volume.LINEAR
. This function is available for both index grids and classical volumes.
- warp.volume_lookup_index(id: uint64, i: int32, j: int32, k: int32) int32 #
Returns the index associated to the voxel with coordinates
i
,j
,k
.If the voxel at this index does not exist, this function returns -1. This function is available for both index grids and classical volumes.
- warp.volume_index_to_world(id: uint64, uvw: vec3f) vec3f #
Transform a point
uvw
defined in volume index space to world space given the volume’s intrinsic affine transformation.
- warp.volume_world_to_index(id: uint64, xyz: vec3f) vec3f #
Transform a point
xyz
defined in volume world space to the volume’s index space given the volume’s intrinsic affine transformation.
Random#
- warp.rand_init(seed: int32) uint32 #
Initialize a new random number generator given a user-defined seed. Returns a 32-bit integer representing the RNG state.
- warp.rand_init(seed: int32, offset: int32) uint32
Initialize a new random number generator given a user-defined seed and an offset.
This alternative constructor can be useful in parallel programs, where a kernel as a whole should share a seed, but each thread should generate uncorrelated values. In this case usage should be
r = rand_init(seed, tid)
- warp.randf(state: uint32, low: float32, high: float32) float
Return a random float between [low, high).
- warp.sample_cdf(state: uint32, cdf: Array[float32]) int #
Inverse-transform sample a cumulative distribution function.
- warp.sample_triangle(state: uint32) vec2f #
Uniformly sample a triangle. Returns sample barycentric coordinates.
- warp.sample_unit_hemisphere_surface(state: uint32) vec3f #
Uniformly sample a unit hemisphere surface.
- warp.poisson(state: uint32, lam: float32) uint32 #
Generate a random sample from a Poisson distribution.
- Parameters:
state – RNG state
lam – The expected value of the distribution
- warp.pnoise(state: uint32, xy: vec2f, px: int32, py: int32) float
Periodic Perlin-style noise in 2D.
- warp.pnoise( ) float
Periodic Perlin-style noise in 3D.
- warp.pnoise( ) float
Periodic Perlin-style noise in 4D.
- warp.curlnoise( ) vec2f #
Divergence-free vector field based on the gradient of a Perlin noise function. [1]
Other#
- warp.lower_bound(arr: Array[Scalar], value: Scalar) int #
Search a sorted array
arr
for the closest element greater than or equal tovalue
.
- warp.lower_bound( ) int
Search a sorted array
arr
in the range [arr_begin, arr_end) for the closest element greater than or equal tovalue
.
Operators#
- warp.add(
- a: Quaternion[Scalar],
- b: Quaternion[Scalar],
- warp.add(
- a: Transformation[Scalar],
- b: Transformation[Scalar],
- warp.add(a: Tile, b: Tile) Tile
Add each element of two tiles together
- warp.sub(
- a: Quaternion[Scalar],
- b: Quaternion[Scalar],
- warp.sub(
- a: Transformation[Scalar],
- b: Transformation[Scalar],
- warp.mul(a: Quaternion[Scalar], b: Scalar) Quaternion[Scalar]
- warp.mul(a: Scalar, b: Quaternion[Scalar]) Quaternion[Scalar]
- warp.mul(
- a: Quaternion[Scalar],
- b: Quaternion[Scalar],
- warp.mul(
- a: Transformation[Scalar],
- b: Transformation[Scalar],
- warp.mul(a: Scalar, b: Transformation[Scalar]) Transformation[Scalar]
- warp.mul(a: Transformation[Scalar], b: Scalar) Transformation[Scalar]
- warp.mul(x: Tile, y: Scalar) Tile
Multiply each element of a tile by a scalar
- warp.mul(x: Scalar, y: Tile) Tile
Multiply each element of a tile by a scalar
- warp.mod(a: Vector[Any, Scalar], b: Vector[Any, Scalar]) Scalar
Modulo operation using truncated division.
- warp.div(a: Quaternion[Scalar], b: Scalar) Quaternion[Scalar]
- warp.div(a: Scalar, b: Quaternion[Scalar]) Quaternion[Scalar]
- warp.pos(x: Quaternion[Scalar]) Quaternion[Scalar]
- warp.neg(x: Quaternion[Scalar]) Quaternion[Scalar]
- warp.neg(x: Tile) Tile
Negate each element of a tile
Code Generation#
- warp.static(expr: Any) Any [source]#
Evaluates a static Python expression and replaces it with its result.
See the code generation guide for more details.
The inner expression must only reference variables that are available from the current scope where the Warp kernel or function containing the expression is defined, which includes constant variables and variables captured in the current closure in which the function or kernel is implemented. The return type of the expression must be either a Warp function, a string, or a type that is supported inside Warp kernels and functions (excluding Warp arrays since they cannot be created in a Warp kernel at the moment).
Footnotes