Kernel Reference#

Scalar Types#

class warp.int8[source]#
class warp.uint8[source]#
class warp.int16[source]#
class warp.uint16[source]#
class warp.int32[source]#
class warp.uint32[source]#
class warp.int64[source]#
class warp.uint64[source]#
class warp.float16[source]#
class warp.float32[source]#
class warp.float64[source]#
class warp.bool[source]#

Vector Types#

class warp.vec2b[source]#
class warp.vec2ub[source]#
class warp.vec2s[source]#
class warp.vec2us[source]#
class warp.vec2i[source]#
class warp.vec2ui[source]#
class warp.vec2l[source]#
class warp.vec2ul[source]#
class warp.vec2h[source]#
class warp.vec2f[source]#
class warp.vec2d[source]#
class warp.vec3b[source]#
class warp.vec3ub[source]#
class warp.vec3s[source]#
class warp.vec3us[source]#
class warp.vec3i[source]#
class warp.vec3ui[source]#
class warp.vec3l[source]#
class warp.vec3ul[source]#
class warp.vec3h[source]#
class warp.vec3f[source]#
class warp.vec3d[source]#
class warp.vec4b[source]#
class warp.vec4ub[source]#
class warp.vec4s[source]#
class warp.vec4us[source]#
class warp.vec4i[source]#
class warp.vec4ui[source]#
class warp.vec4l[source]#
class warp.vec4ul[source]#
class warp.vec4h[source]#
class warp.vec4f[source]#
class warp.vec4d[source]#
class warp.mat22h[source]#
class warp.mat22f[source]#
class warp.mat22d[source]#
class warp.mat33h[source]#
class warp.mat33f[source]#
class warp.mat33d[source]#
class warp.mat44h[source]#
class warp.mat44f[source]#
class warp.mat44d[source]#
class warp.quath[source]#
class warp.quatf[source]#
class warp.quatd[source]#
class warp.transformh[source]#
class warp.transformf[source]#
class warp.transformd[source]#
class warp.spatial_vectorh[source]#
class warp.spatial_vectorf[source]#
class warp.spatial_vectord[source]#
class warp.spatial_matrixh[source]#
class warp.spatial_matrixf[source]#
class warp.spatial_matrixd[source]#

Generic Types#

class warp.Int#
class warp.Float#
class warp.Scalar#
class warp.Vector#
class warp.Matrix#
class warp.Quaternion#
class warp.Transformation#
class warp.Array#

Scalar Math#

warp.min(a: Scalar, b: Scalar) Scalar#

Return the minimum of two scalars.

warp.min(
a: Vector[Any, Scalar],
b: Vector[Any, Scalar],
) Vector[Any, Scalar]

Return the element-wise minimum of two vectors.

warp.min(a: Vector[Any, Scalar]) Scalar

Return the minimum element of a vector a.

warp.max(a: Scalar, b: Scalar) Scalar#

Return the maximum of two scalars.

warp.max(
a: Vector[Any, Scalar],
b: Vector[Any, Scalar],
) Vector[Any, Scalar]

Return the element-wise maximum of two vectors.

warp.max(a: Vector[Any, Scalar]) Scalar

Return the maximum element of a vector a.

warp.clamp(x: Scalar, low: Scalar, high: Scalar) Scalar#

Clamp the value of x to the range [low, high].

warp.abs(x: Scalar) Scalar#

Return the absolute value of x.

warp.abs(x: Vector[Any, Scalar]) Vector[Any, Scalar]

Return the absolute values of the elements of x.

warp.sign(x: Scalar) Scalar#

Return -1 if x < 0, return 1 otherwise.

warp.sign(x: Vector[Any, Scalar]) Scalar

Return -1 for the negative elements of x, and 1 otherwise.

warp.step(x: Scalar) Scalar#

Return 1.0 if x < 0.0, return 0.0 otherwise.

warp.nonzero(x: Scalar) Scalar#

Return 1.0 if x is not equal to zero, return 0.0 otherwise.

warp.sin(x: Float) Float#

Return the sine of x in radians.

warp.cos(x: Float) Float#

Return the cosine of x in radians.

warp.acos(x: Float) Float#

Return arccos of x in radians. Inputs are automatically clamped to [-1.0, 1.0].

warp.asin(x: Float) Float#

Return arcsin of x in radians. Inputs are automatically clamped to [-1.0, 1.0].

warp.sqrt(x: Float) Float#

Return the square root of x, where x is positive.

warp.cbrt(x: Float) Float#

Return the cube root of x.

warp.tan(x: Float) Float#

Return the tangent of x in radians.

warp.atan(x: Float) Float#

Return the arctangent of x in radians.

warp.atan2(y: Float, x: Float) Float#

Return the 2-argument arctangent, atan2, of the point (x, y) in radians.

warp.sinh(x: Float) Float#

Return the sinh of x.

warp.cosh(x: Float) Float#

Return the cosh of x.

warp.tanh(x: Float) Float#

Return the tanh of x.

warp.degrees(x: Float) Float#

Convert x from radians into degrees.

warp.radians(x: Float) Float#

Convert x from degrees into radians.

warp.log(x: Float) Float#

Return the natural logarithm (base-e) of x, where x is positive.

warp.log2(x: Float) Float#

Return the binary logarithm (base-2) of x, where x is positive.

warp.log10(x: Float) Float#

Return the common logarithm (base-10) of x, where x is positive.

warp.exp(x: Float) Float#

Return the value of the exponential function \(e^x\).

warp.pow(x: Float, y: Float) Float#

Return the result of x raised to power of y.

warp.round(x: Float) Float#

Return the nearest integer value to x, rounding halfway cases away from zero.

This is the most intuitive form of rounding in the colloquial sense, but can be slower than other options like warp.rint(). Differs from numpy.round(), which behaves the same way as numpy.rint().

warp.rint(x: Float) Float#

Return the nearest integer value to x, rounding halfway cases to nearest even integer.

It is generally faster than warp.round(). Equivalent to numpy.rint().

warp.trunc(x: Float) Float#

Return the nearest integer that is closer to zero than x.

In other words, it discards the fractional part of x. It is similar to casting float(int(a)), but preserves the negative sign when x is in the range [-0.0, -1.0). Equivalent to numpy.trunc() and numpy.fix().

warp.floor(x: Float) Float#

Return the largest integer that is less than or equal to x.

warp.ceil(x: Float) Float#

Return the smallest integer that is greater than or equal to x.

warp.frac(x: Float) Float#

Retrieve the fractional part of x.

In other words, it discards the integer part of x and is equivalent to x - trunc(x).

warp.isfinite(a: Scalar) bool#

Return True if a is a finite number, otherwise return False.

warp.isfinite(a: Vector[Any, Scalar]) bool

Return True if all elements of the vector a are finite, otherwise return False.

warp.isfinite(a: Quaternion[Scalar]) bool

Return True if all elements of the quaternion a are finite, otherwise return False.

warp.isfinite(a: Matrix[Any, Any, Scalar]) bool

Return True if all elements of the matrix a are finite, otherwise return False.

warp.isnan(a: Scalar) bool#

Return True if a is NaN, otherwise return False.

warp.isnan(a: Vector[Any, Scalar]) bool

Return True if any element of the vector a is NaN, otherwise return False.

warp.isnan(a: Quaternion[Scalar]) bool

Return True if any element of the quaternion a is NaN, otherwise return False.

warp.isnan(a: Matrix[Any, Any, Scalar]) bool

Return True if any element of the matrix a is NaN, otherwise return False.

warp.isinf(a: Scalar) bool#

Return True if a is positive or negative infinity, otherwise return False.

warp.isinf(a: Vector[Any, Scalar]) bool

Return True if any element of the vector a is positive or negative infinity, otherwise return False.

warp.isinf(a: Quaternion[Scalar]) bool

Return True if any element of the quaternion a is positive or negative infinity, otherwise return False.

warp.isinf(a: Matrix[Any, Any, Scalar]) bool

Return True if any element of the matrix a is positive or negative infinity, otherwise return False.

Vector Math#

warp.dot(a: Vector[Any, Scalar], b: Vector[Any, Scalar]) Scalar#

Compute the dot product between two vectors.

warp.dot(a: Quaternion[Float], b: Quaternion[Float]) Float

Compute the dot product between two quaternions.

warp.ddot(a: Matrix[Any, Any, Scalar], b: Matrix[Any, Any, Scalar]) Scalar#

Compute the double dot product between two matrices.

warp.argmin(a: Vector[Any, Scalar]) uint32#

Return the index of the minimum element of a vector a. [1]

warp.argmax(a: Vector[Any, Scalar]) uint32#

Return the index of the maximum element of a vector a. [1]

warp.outer(
a: Vector[Any, Scalar],
b: Vector[Any, Scalar],
) Matrix[Any, Any, Scalar]#

Compute the outer product a*b^T for two vectors.

warp.cross(a: Vector[3, Scalar], b: Vector[3, Scalar]) Vector[3, Scalar]#

Compute the cross product of two 3D vectors.

warp.skew(vec: Vector[3, Scalar]) Matrix[3, 3, Scalar]#

Compute the skew-symmetric 3x3 matrix for a 3D vector vec.

warp.length(a: Vector[Any, Float]) Float#

Compute the length of a floating-point vector a.

warp.length(a: Quaternion[Float]) Float

Compute the length of a quaternion a.

warp.length_sq(a: Vector[Any, Scalar]) Scalar#

Compute the squared length of a vector a.

warp.length_sq(a: Quaternion[Scalar]) Scalar

Compute the squared length of a quaternion a.

warp.normalize(a: Vector[Any, Float]) Vector[Any, Float]#

Compute the normalized value of a. If length(a) is 0 then the zero vector is returned.

warp.normalize(a: Quaternion[Float]) Quaternion[Float]

Compute the normalized value of a. If length(a) is 0, then the zero quaternion is returned.

warp.transpose(a: Matrix[Any, Any, Scalar]) Matrix[Any, Any, Scalar]#

Return the transpose of the matrix a.

warp.inverse(a: Matrix[2, 2, Float]) Matrix[Any, Any, Float]#

Return the inverse of a 2x2 matrix a.

warp.inverse(a: Matrix[3, 3, Float]) Matrix[Any, Any, Float]

Return the inverse of a 3x3 matrix a.

warp.inverse(a: Matrix[4, 4, Float]) Matrix[Any, Any, Float]

Return the inverse of a 4x4 matrix a.

warp.determinant(a: Matrix[2, 2, Float]) Float#

Return the determinant of a 2x2 matrix a.

warp.determinant(a: Matrix[3, 3, Float]) Float

Return the determinant of a 3x3 matrix a.

warp.determinant(a: Matrix[4, 4, Float]) Float

Return the determinant of a 4x4 matrix a.

warp.trace(a: Matrix[Any, Any, Scalar]) Scalar#

Return the trace of the matrix a.

warp.diag(vec: Vector[Any, Scalar]) Matrix[Any, Any, Scalar]#

Returns a matrix with the components of the vector vec on the diagonal.

warp.get_diag(mat: Matrix[Any, Any, Scalar]) Vector[Any, Scalar]#

Returns a vector containing the diagonal elements of the square matrix mat.

warp.cw_mul(
a: Vector[Any, Scalar],
b: Vector[Any, Scalar],
) Vector[Any, Scalar]#

Component-wise multiplication of two vectors.

warp.cw_mul(
a: Matrix[Any, Any, Scalar],
b: Matrix[Any, Any, Scalar],
) Matrix[Any, Any, Scalar]

Component-wise multiplication of two matrices.

warp.cw_div(
a: Vector[Any, Scalar],
b: Vector[Any, Scalar],
) Vector[Any, Scalar]#

Component-wise division of two vectors.

warp.cw_div(
a: Matrix[Any, Any, Scalar],
b: Matrix[Any, Any, Scalar],
) Matrix[Any, Any, Scalar]

Component-wise division of two matrices.

warp.vector(
*args: Scalar,
length: int32,
dtype: Scalar,
) Vector[Any, Scalar]#

Construct a vector of given length and dtype.

warp.matrix(
pos: Vector[3, Float],
rot: Quaternion[Float],
scale: Vector[3, Float],
dtype: Float,
) Matrix[4, 4, Float]#

Construct a 4x4 transformation matrix that applies the transformations as Translation(pos)*Rotation(rot)*Scaling(scale) when applied to column vectors, i.e.: y = (TRS)*x

warp.matrix(
*args: Scalar,
shape: Tuple[int, int],
dtype: Scalar,
) Matrix[Any, Any, Scalar]

Construct a matrix. If the positional arg_types are not given, then matrix will be zero-initialized.

warp.identity(n: int32, dtype: Scalar) Matrix[Any, Any, Scalar]#

Create an identity matrix with shape=(n,n) with the type given by dtype.

warp.svd3(
A: Matrix[3, 3, Float],
U: Matrix[3, 3, Float],
sigma: Vector[3, Float],
V: Matrix[3, 3, Scalar],
) None#

Compute the SVD of a 3x3 matrix A. The singular values are returned in sigma, while the left and right basis vectors are returned in U and V.

warp.qr3(
A: Matrix[3, 3, Float],
Q: Matrix[3, 3, Float],
R: Matrix[3, 3, Float],
) None#

Compute the QR decomposition of a 3x3 matrix A. The orthogonal matrix is returned in Q, while the upper triangular matrix is returned in R.

warp.eig3(
A: Matrix[3, 3, Float],
Q: Matrix[3, 3, Float],
d: Vector[3, Float],
) None#

Compute the eigendecomposition of a 3x3 matrix A. The eigenvectors are returned as the columns of Q, while the corresponding eigenvalues are returned in d.

warp.math.norm_l1(v)#

Computes the L1 norm of a vector v.

\[\|v\|_1 = \sum_i |v_i|\]
Parameters:

v (Vector[Any,Float]) – The vector to compute the L1 norm of.

Returns:

The L1 norm of the vector.

Return type:

float

warp.math.norm_l2(v)#

Computes the L2 norm of a vector v.

\[\|v\|_2 = \sqrt{\sum_i v_i^2}\]
Parameters:

v (Vector[Any,Float]) – The vector to compute the L2 norm of.

Returns:

The L2 norm of the vector.

Return type:

float

warp.math.norm_huber(v, delta=1.0)#

Computes the Huber norm of a vector v with a given delta.

\[\begin{split}H(v) = \begin{cases} \frac{1}{2} \|v\|^2 & \text{if } \|v\| \leq \delta \\ \delta(\|v\| - \frac{1}{2}\delta) & \text{otherwise} \end{cases}\end{split}\]
../_images/norm_huber.svg
Parameters:
  • v (Vector[Any,Float]) – The vector to compute the Huber norm of.

  • delta (float) – The threshold value, defaults to 1.0.

Returns:

The Huber norm of the vector.

Return type:

float

warp.math.norm_pseudo_huber(v, delta=1.0)#

Computes the “pseudo” Huber norm of a vector v with a given delta.

\[H^\prime(v) = \delta \sqrt{1 + \frac{\|v\|^2}{\delta^2}}\]
../_images/norm_pseudo_huber.svg
Parameters:
  • v (Vector[Any,Float]) – The vector to compute the Huber norm of.

  • delta (float) – The threshold value, defaults to 1.0.

Returns:

The Huber norm of the vector.

Return type:

float

warp.math.smooth_normalize(v, delta=1.0)#

Normalizes a vector using the pseudo-Huber norm.

See norm_pseudo_huber().

\[\frac{v}{H^\prime(v)}\]
Parameters:
  • v (Vector[Any,Float]) – The vector to normalize.

  • delta (float) – The threshold value, defaults to 1.0.

Returns:

The normalized vector.

Return type:

Vector[Any,Float]

Quaternion Math#

warp.quaternion(dtype: Float) Quaternion[Float]#

Construct a zero-initialized quaternion. Quaternions are laid out as [ix, iy, iz, r], where ix, iy, iz are the imaginary part, and r the real part.

warp.quaternion(
x: Float,
y: Float,
z: Float,
w: Float,
) Quaternion[Float]

Create a quaternion using the supplied components (type inferred from component type).

warp.quaternion(
ijk: Vector[3, Float],
real: Float,
dtype: Float,
) Quaternion[Float]

Create a quaternion using the supplied vector/scalar (type inferred from scalar type).

warp.quaternion(quat: Quaternion[Float], dtype: Float) Quaternion[Float]

Construct a quaternion of type dtype from another quaternion of a different dtype.

warp.quat_identity(dtype: Float) quatf#

Construct an identity quaternion with zero imaginary part and real part of 1.0

warp.quat_from_axis_angle(
axis: Vector[3, Float],
angle: Float,
) Quaternion[Float]#

Construct a quaternion representing a rotation of angle radians around the given axis.

warp.quat_to_axis_angle(
quat: Quaternion[Float],
axis: Vector[3, Float],
angle: Float,
) None#

Extract the rotation axis and angle radians a quaternion represents.

warp.quat_from_matrix(mat: Matrix[3, 3, Float]) Quaternion[Float]#

Construct a quaternion from a 3x3 matrix.

warp.quat_rpy(roll: Float, pitch: Float, yaw: Float) Quaternion[Float]#

Construct a quaternion representing a combined roll (z), pitch (x), yaw rotations (y) in radians.

warp.quat_inverse(quat: Quaternion[Float]) Quaternion[Float]#

Compute quaternion conjugate.

warp.quat_rotate(
quat: Quaternion[Float],
vec: Vector[3, Float],
) Vector[3, Float]#

Rotate a vector by a quaternion.

warp.quat_rotate_inv(
quat: Quaternion[Float],
vec: Vector[3, Float],
) Vector[3, Float]#

Rotate a vector by the inverse of a quaternion.

warp.quat_slerp(
a: Quaternion[Float],
b: Quaternion[Float],
t: Float,
) Quaternion[Float]#

Linearly interpolate between two quaternions.

warp.quat_to_matrix(quat: Quaternion[Float]) Matrix[3, 3, Float]#

Convert a quaternion to a 3x3 rotation matrix.

Transformations#

warp.transformation(
pos: Vector[3, Float],
rot: Quaternion[Float],
dtype: Float,
) Transformation[Float]#

Construct a rigid-body transformation with translation part pos and rotation rot.

warp.transform_identity(dtype: Float) transformf#

Construct an identity transform with zero translation and identity rotation.

warp.transform_get_translation(
xform: Transformation[Float],
) Vector[3, Float]#

Return the translational part of a transform xform.

warp.transform_get_rotation(
xform: Transformation[Float],
) Quaternion[Float]#

Return the rotational part of a transform xform.

warp.transform_multiply(
a: Transformation[Float],
b: Transformation[Float],
) Transformation[Float]#

Multiply two rigid body transformations together.

warp.transform_point(
xform: Transformation[Float],
point: Vector[3, Float],
) Vector[3, Float]#

Apply the transform to a point point treating the homogeneous coordinate as w=1 (translation and rotation).

warp.transform_point(
mat: Matrix[4, 4, Float],
point: Vector[3, Float],
) Vector[3, Float]

Apply the transform to a point point treating the homogeneous coordinate as w=1.

The transformation is applied treating point as a column vector, e.g.: y = mat*point.

This is in contrast to some libraries, notably USD, which applies transforms to row vectors, y^T = point^T*mat^T. If the transform is coming from a library that uses row-vectors, then users should transpose the transformation matrix before calling this method.

warp.transform_vector(
xform: Transformation[Float],
vec: Vector[3, Float],
) Vector[3, Float]#

Apply the transform to a vector vec treating the homogeneous coordinate as w=0 (rotation only).

warp.transform_vector(
mat: Matrix[4, 4, Float],
vec: Vector[3, Float],
) Vector[3, Float]

Apply the transform to a vector vec treating the homogeneous coordinate as w=0.

The transformation is applied treating vec as a column vector, e.g.: y = mat*vec.

This is in contrast to some libraries, notably USD, which applies transforms to row vectors, y^T = vec^T*mat^T. If the transform is coming from a library that uses row-vectors, then users should transpose the transformation matrix before calling this method.

warp.transform_inverse(
xform: Transformation[Float],
) Transformation[Float]#

Compute the inverse of the transformation xform.

Spatial Math#

warp.spatial_vector(dtype: Float) Vector[6, Float][source]#

Zero-initialize a 6D screw vector.

warp.spatial_vector(
w: Vector[3, Float],
v: Vector[3, Float],
dtype: Float,
) Vector[6, Float][source]

Construct a 6D screw vector from two 3D vectors.

warp.spatial_vector(
wx: Float,
wy: Float,
wz: Float,
vx: Float,
vy: Float,
vz: Float,
dtype: Float,
) Vector[6, Float][source]

Construct a 6D screw vector from six values.

warp.spatial_adjoint(
r: Matrix[3, 3, Float],
s: Matrix[3, 3, Float],
) Matrix[6, 6, Float]#

Construct a 6x6 spatial inertial matrix from two 3x3 diagonal blocks.

warp.spatial_dot(a: Vector[6, Float], b: Vector[6, Float]) Float#

Compute the dot product of two 6D screw vectors.

warp.spatial_cross(
a: Vector[6, Float],
b: Vector[6, Float],
) Vector[6, Float]#

Compute the cross product of two 6D screw vectors.

warp.spatial_cross_dual(
a: Vector[6, Float],
b: Vector[6, Float],
) Vector[6, Float]#

Compute the dual cross product of two 6D screw vectors.

warp.spatial_top(svec: Vector[6, Float]) Vector[3, Float]#

Return the top (first) part of a 6D screw vector.

warp.spatial_bottom(svec: Vector[6, Float]) Vector[3, Float]#

Return the bottom (second) part of a 6D screw vector.

warp.spatial_jacobian(
S: Array[Vector[6, Float]],
joint_parents: Array[int32],
joint_qd_start: Array[int32],
joint_start: int32,
joint_count: int32,
J_start: int32,
J_out: Array[Float],
) None#
warp.spatial_mass(
I_s: Array[Matrix[6, 6, Float]],
joint_start: int32,
joint_count: int32,
M_start: int32,
M: Array[Float],
) None#

Tile Primitives#

warp.tile_zeros(shape: Tuple[int, ...], dtype: Any, storage: str) Tile#

Allocate a tile of zero-initialized items.

Parameters:
  • shape – Shape of the output tile

  • dtype – Data type of output tile’s elements (default float)

  • storage – The storage location for the tile: "register" for registers (default) or "shared" for shared memory.

Returns:

A zero-initialized tile with shape and data type as specified [1]

warp.tile_ones(shape: Tuple[int, ...], dtype: Any, storage: str) Tile#

Allocate a tile of one-initialized items.

Parameters:
  • shape – Shape of the output tile

  • dtype – Data type of output tile’s elements

  • storage – The storage location for the tile: "register" for registers (default) or "shared" for shared memory.

Returns:

A one-initialized tile with shape and data type as specified [1]

warp.tile_arange(*args: Scalar, dtype: Any, storage: str) Tile#

Generate a tile of linearly spaced elements.

Parameters:
  • args

    Variable-length positional arguments, interpreted as:

    • (stop,): Generates values from 0 to stop - 1

    • (start, stop): Generates values from start to stop - 1

    • (start, stop, step): Generates values from start to stop - 1 with a step size

  • dtype – Data type of output tile’s elements (optional, default: float)

  • storage – The storage location for the tile: "register" for registers (default) or "shared" for shared memory.

Returns:

A tile with shape=(n) with linearly spaced elements of specified data type [1]

warp.tile_load(
a: Array[Any],
shape: Tuple[int, ...],
offset: Tuple[int, ...],
storage: str,
) Array[Scalar]#

Loads a tile from a global memory array.

This method will cooperatively load a tile from global memory using all threads in the block.

Parameters:
  • a – The source array in global memory

  • shape – Shape of the tile to load, must have the same number of dimensions as a

  • offset – Offset in the source array to begin reading from (optional)

  • storage – The storage location for the tile: "register" for registers (default) or "shared" for shared memory.

Returns:

A tile with shape as specified and data type the same as the source array

warp.tile_store(a: Array[Any], t: Tile, offset: Tuple[int, ...]) None#

Store a tile to a global memory array.

This method will cooperatively store a tile to global memory using all threads in the block.

Parameters:
  • a – The destination array in global memory

  • t – The source tile to store data from, must have the same data type and number of dimensions as the destination array

  • offset – Offset in the destination array (optional)

warp.tile_atomic_add(
a: Array[Any],
t: Tile,
offset: Tuple[int, ...],
) Tile#

Atomically add a 1D tile to the array a, each element will be updated atomically.

Parameters:
  • a – Array in global memory, should have the same dtype as the input tile

  • t – Source tile to add to the destination array

  • offset – Offset in the destination array (optional)

Returns:

A tile with the same dimensions and data type as the source tile, holding the original value of the destination elements

warp.tile_view(
t: Tile,
offset: Tuple[int, ...],
shape: Tuple[int, ...],
) Tile#

Return a slice of a given tile [offset, offset+shape], if shape is not specified it will be inferred from the unspecified offset dimensions.

Parameters:
  • t – Input tile to extract a subrange from

  • offset – Offset in the source tile

  • shape – Shape of the returned slice

Returns:

A tile with dimensions given by the specified shape or the remaining source tile dimensions [1]

warp.tile_assign(dst: Tile, src: Tile, offset: Tuple[int, ...]) None#

Assign a tile to a subrange of a destination tile.

Parameters:
  • dst – The destination tile to assign to

  • src – The source tile to read values from

  • offset – Offset in the destination tile to write to

warp.tile(x: Any) Tile#

Construct a new tile from per-thread kernel values.

This function converts values computed using scalar kernel code to a tile representation for input into collective operations.

  • If the input value is a scalar, then the resulting tile has shape=(1, block_dim)

  • If the input value is a vector, then the resulting tile has shape=(length(vector), block_dim)

Parameters:

x – A per-thread local value, e.g. scalar, vector, or matrix.

Returns:

A tile with first dimension according to the value type length and a second dimension equal to block_dim

This example shows how to create a linear sequence from thread variables:

@wp.kernel
def compute():
    i = wp.tid()
    t = wp.tile(i*2)
    print(t)

wp.launch(compute, dim=16, inputs=[], block_dim=16)

Prints:

[0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30] = tile(shape=(16), storage=register)
warp.untile(a: Tile) Scalar#

Convert a tile back to per-thread values.

This function converts a block-wide tile back to per-thread values.

  • If the input tile is 1D, then the resulting value will be a per-thread scalar

  • If the input tile is 2D, then the resulting value will be a per-thread vector of length M

Parameters:

a – A tile with dimensions shape=(M, block_dim)

Returns:

A single value per-thread with the same data type as the tile

This example shows how to create a linear sequence from thread variables:

@wp.kernel
def compute():
    i = wp.tid()

    # create block-wide tile
    t = wp.tile(i)*2

    # convert back to per-thread values
    s = wp.untile(t)

    print(s)

wp.launch(compute, dim=16, inputs=[], block_dim=16)

Prints:

0
2
4
6
8
...
warp.tile_transpose(a: Tile) Tile#

Transpose a tile.

For shared memory tiles, this operation will alias the input tile. Register tiles will first be transferred to shared memory before transposition.

Parameters:

a – Tile to transpose with shape=(M,N)

Returns:

Tile with shape=(N,M)

warp.tile_broadcast(a: Tile, shape: Tuple[int, ...]) Tile#

Broadcast a tile.

This function will attempt to broadcast the input tile a to the destination shape (m, n).

Broadcasting follows NumPy broadcast rules.

Parameters:
  • a – Tile to broadcast

  • shape – The shape to broadcast to

Returns:

Tile with broadcast shape=(m, n)

warp.tile_sum(a: Tile) Tile#

Cooperatively compute the sum of the tile elements using all threads in the block.

Parameters:

a – The tile to compute the sum of

Returns:

A single-element tile holding the sum

Example:

@wp.kernel
def compute():

    t = wp.tile_ones(dtype=float, shape=(16, 16))
    s = wp.tile_sum(t)

    print(s)

wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=64)

Prints:

[256] = tile(shape=(1), storage=register)
warp.tile_min(a: Tile) Tile#

Cooperatively compute the minimum of the tile elements using all threads in the block.

Parameters:

a – The tile to compute the minimum of

Returns:

A single-element tile holding the minimum value

Example:

@wp.kernel
def compute():

    t = wp.tile_arange(64, 128)
    s = wp.tile_min(t)

    print(s)


wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=64)

Prints:

[64] = tile(shape=(1), storage=register)
warp.tile_max(a: Tile) Tile#

Cooperatively compute the maximum of the tile elements using all threads in the block.

Parameters:

a – The tile to compute the maximum from

Returns:

A single-element tile holding the maximum value

Example:

@wp.kernel
def compute():

    t = wp.tile_arange(64, 128)
    s = wp.tile_max(t)

    print(s)

wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=64)

Prints:

[127] = tile(shape=(1), storage=register)
warp.tile_reduce(op: Callable, a: Tile) Tile#

Apply a custom reduction operator across the tile.

This function cooperatively performs a reduction using the provided operator across the tile.

Parameters:
  • op – A callable function that accepts two arguments and returns one argument, may be a user function or builtin

  • a – The input tile, the operator (or one of its overloads) must be able to accept the tile’s data type

Returns:

A single-element tile with the same data type as the input tile.

Example:

@wp.kernel
def factorial():

    t = wp.tile_arange(1, 10, dtype=int)
    s = wp.tile_reduce(wp.mul, t)

    print(s)

wp.launch_tiled(factorial, dim=[1], inputs=[], block_dim=16)

Prints:

[362880] = tile(shape=(1), storage=register)
warp.tile_map(op: Callable, a: Tile) Tile#

Apply a unary function onto the tile.

This function cooperatively applies a unary function to each element of the tile using all threads in the block.

Parameters:
  • op – A callable function that accepts one argument and returns one argument, may be a user function or builtin

  • a – The input tile, the operator (or one of its overloads) must be able to accept the tile’s data type

Returns:

A tile with the same dimensions and data type as the input tile.

Example:

@wp.kernel
def compute():

    t = wp.tile_arange(0.0, 1.0, 0.1, dtype=float)
    s = wp.tile_map(wp.sin, t)

    print(s)

wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=16)

Prints:

[0 0.0998334 0.198669 0.29552 0.389418 0.479426 0.564642 0.644218 0.717356 0.783327] = tile(shape=(10), storage=register)
warp.tile_map(op: Callable, a: Tile, b: Tile) Tile

Apply a binary function onto the tile.

This function cooperatively applies a binary function to each element of the tiles using all threads in the block. Both input tiles must have the same dimensions and datatype.

Parameters:
  • op – A callable function that accepts two arguments and returns one argument, all of the same type, may be a user function or builtin

  • a – The first input tile, the operator (or one of its overloads) must be able to accept the tile’s dtype

  • b – The second input tile, the operator (or one of its overloads) must be able to accept the tile’s dtype

Returns:

A tile with the same dimensions and datatype as the input tiles.

Example:

@wp.kernel
def compute():

    a = wp.tile_arange(0.0, 1.0, 0.1, dtype=float)
    b = wp.tile_ones(shape=10, dtype=float)

    s = wp.tile_map(wp.add, a, b)

    print(s)

wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=16)

Prints:

[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9] = tile(shape=(10), storage=register)
warp.tile_diag_add(a: Tile, d: Tile) Tile#

Add a square matrix and a diagonal matrix ‘d’ represented as a 1D tile

warp.tile_matmul(a: Tile, b: Tile, out: Tile) Tile#

Computes the matrix product and accumulates out += a*b.

Supported datatypes are:
  • fp16, fp32, fp64 (real)

  • vec2h, vec2f, vec2d (complex)

All input and output tiles must have the same datatype. Tile data will be automatically be migrated to shared memory if necessary and will use TensorCore operations when available.

Parameters:
  • a – A tile with shape=(M, K)

  • b – A tile with shape=(K, N)

  • out – A tile with shape=(M, N)

warp.tile_matmul(a: Tile, b: Tile) Tile

Computes the matrix product out = a*b.

Supported datatypes are:
  • fp16, fp32, fp64 (real)

  • vec2h, vec2f, vec2d (complex)

Both input tiles must have the same datatype. Tile data will be automatically be migrated to shared memory if necessary and will use TensorCore operations when available.

Parameters:
  • a – A tile with shape=(M, K)

  • b – A tile with shape=(K, N)

Returns:

A tile with shape=(M, N)

warp.tile_fft(inout: Tile) Tile#

Compute the forward FFT along the second dimension of a 2D tile of data.

This function cooperatively computes the forward FFT on a tile of data inplace, treating each row individually.

Note that computing the adjoint is not yet supported.

Supported datatypes are:
  • vec2f, vec2d

Parameters:

inout – The input/output tile

warp.tile_ifft(inout: Tile) Tile#

Compute the inverse FFT along the second dimension of a 2D tile of data.

This function cooperatively computes the inverse FFT on a tile of data inplace, treating each row individually.

Note that computing the adjoint is not yet supported.

Supported datatypes are:
  • vec2f, vec2d

Parameters:

inout – The input/output tile

warp.tile_cholesky(A: Tile) Tile#

Compute the Cholesky factorization L of a matrix A. L is lower triangular and satisfies LL^T = A.

Note that computing the adjoint is not yet supported.

Supported datatypes are:
  • float32

  • float64

Parameters:

A – A square, symmetric positive-definite, matrix.

Returns L:

A square, lower triangular, matrix, such that LL^T = A

warp.tile_cholesky_solve(L: Tile, x: Tile) None#

With L such that LL^T = A, solve for x in Ax = y

Note that computing the adjoint is not yet supported.

Supported datatypes are:
  • float32

  • float64

Parameters:
  • L – A square, lower triangular, matrix, such that LL^T = A

  • x – An 1D tile of length M

Returns y:

An 1D tile of length M such that LL^T y = x

Utility#

warp.mlp(
weights: Array[float32],
bias: Array[float32],
activation: Callable,
index: int32,
x: Array[float32],
out: Array[float32],
) None#

Evaluate a multi-layer perceptron (MLP) layer in the form: out = act(weights*x + bias).

Deprecated since version 1.6: Use tile primitives instead.

Parameters:
  • weights – A layer’s network weights with dimensions (m, n).

  • bias – An array with dimensions (n).

  • activation – A wp.func function that takes a single scalar float as input and returns a scalar float as output

  • index – The batch item to process, typically each thread will process one item in the batch, in which case index should be wp.tid()

  • x – The feature matrix with dimensions (n, b)

  • out – The network output with dimensions (m, b)

Note:

Feature and output matrices are transposed compared to some other frameworks such as PyTorch. All matrices are assumed to be stored in flattened row-major memory layout (NumPy default).

warp.reversed(range: range_t) range_t#

Returns the range in reversed order.

warp.printf(fmt: str, *args: Any) None#

Allows printing formatted strings using C-style format specifiers.

warp.print(value: Any) None#

Print variable to stdout

warp.breakpoint() None#

Debugger breakpoint

warp.tid() int#

Return the current thread index for a 1D kernel launch.

Note that this is the global index of the thread in the range [0, dim) where dim is the parameter passed to kernel launch.

This function may not be called from user-defined Warp functions.

warp.tid() Tuple[int, int]

Return the current thread indices for a 2D kernel launch.

Use i,j = wp.tid() syntax to retrieve the coordinates inside the kernel thread grid.

This function may not be called from user-defined Warp functions.

warp.tid() Tuple[int, int, int]

Return the current thread indices for a 3D kernel launch.

Use i,j,k = wp.tid() syntax to retrieve the coordinates inside the kernel thread grid.

This function may not be called from user-defined Warp functions.

warp.tid() Tuple[int, int, int, int]

Return the current thread indices for a 4D kernel launch.

Use i,j,k,l = wp.tid() syntax to retrieve the coordinates inside the kernel thread grid.

This function may not be called from user-defined Warp functions.

warp.select(cond: bool, value_if_false: Any, value_if_true: Any) Any#

Select between two arguments, if cond is False then return value_if_false, otherwise return value_if_true

warp.select(cond: int8, value_if_false: Any, value_if_true: Any) Any

Select between two arguments, if cond is False then return value_if_false, otherwise return value_if_true

warp.select(cond: uint8, value_if_false: Any, value_if_true: Any) Any

Select between two arguments, if cond is False then return value_if_false, otherwise return value_if_true

warp.select(cond: int16, value_if_false: Any, value_if_true: Any) Any

Select between two arguments, if cond is False then return value_if_false, otherwise return value_if_true

warp.select(cond: uint16, value_if_false: Any, value_if_true: Any) Any

Select between two arguments, if cond is False then return value_if_false, otherwise return value_if_true

warp.select(cond: int32, value_if_false: Any, value_if_true: Any) Any

Select between two arguments, if cond is False then return value_if_false, otherwise return value_if_true

warp.select(cond: uint32, value_if_false: Any, value_if_true: Any) Any

Select between two arguments, if cond is False then return value_if_false, otherwise return value_if_true

warp.select(cond: int64, value_if_false: Any, value_if_true: Any) Any

Select between two arguments, if cond is False then return value_if_false, otherwise return value_if_true

warp.select(cond: uint64, value_if_false: Any, value_if_true: Any) Any

Select between two arguments, if cond is False then return value_if_false, otherwise return value_if_true

warp.select(
arr: Array[Any],
value_if_false: Any,
value_if_true: Any,
) Any

Select between two arguments, if arr is null then return value_if_false, otherwise return value_if_true

warp.atomic_add(arr: Array[Any], i: Int, value: Any) Any#

Atomically add value onto arr[i] and return the old value.

warp.atomic_add(arr: Array[Any], i: Int, j: Int, value: Any) Any

Atomically add value onto arr[i,j] and return the old value.

warp.atomic_add(arr: Array[Any], i: Int, j: Int, k: Int, value: Any) Any

Atomically add value onto arr[i,j,k] and return the old value.

warp.atomic_add(
arr: Array[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Atomically add value onto arr[i,j,k,l] and return the old value.

warp.atomic_add(arr: FabricArray[Any], i: Int, value: Any) Any

Atomically add value onto arr[i] and return the old value.

warp.atomic_add(arr: FabricArray[Any], i: Int, j: Int, value: Any) Any

Atomically add value onto arr[i,j] and return the old value.

warp.atomic_add(
arr: FabricArray[Any],
i: Int,
j: Int,
k: Int,
value: Any,
) Any

Atomically add value onto arr[i,j,k] and return the old value.

warp.atomic_add(
arr: FabricArray[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Atomically add value onto arr[i,j,k,l] and return the old value.

warp.atomic_add(arr: IndexedFabricArray[Any], i: Int, value: Any) Any

Atomically add value onto arr[i] and return the old value.

warp.atomic_add(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
value: Any,
) Any

Atomically add value onto arr[i,j] and return the old value.

warp.atomic_add(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
k: Int,
value: Any,
) Any

Atomically add value onto arr[i,j,k] and return the old value.

warp.atomic_add(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Atomically add value onto arr[i,j,k,l] and return the old value.

warp.atomic_sub(arr: Array[Any], i: Int, value: Any) Any#

Atomically subtract value onto arr[i] and return the old value.

warp.atomic_sub(arr: Array[Any], i: Int, j: Int, value: Any) Any

Atomically subtract value onto arr[i,j] and return the old value.

warp.atomic_sub(arr: Array[Any], i: Int, j: Int, k: Int, value: Any) Any

Atomically subtract value onto arr[i,j,k] and return the old value.

warp.atomic_sub(
arr: Array[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Atomically subtract value onto arr[i,j,k,l] and return the old value.

warp.atomic_sub(arr: FabricArray[Any], i: Int, value: Any) Any

Atomically subtract value onto arr[i] and return the old value.

warp.atomic_sub(arr: FabricArray[Any], i: Int, j: Int, value: Any) Any

Atomically subtract value onto arr[i,j] and return the old value.

warp.atomic_sub(
arr: FabricArray[Any],
i: Int,
j: Int,
k: Int,
value: Any,
) Any

Atomically subtract value onto arr[i,j,k] and return the old value.

warp.atomic_sub(
arr: FabricArray[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Atomically subtract value onto arr[i,j,k,l] and return the old value.

warp.atomic_sub(arr: IndexedFabricArray[Any], i: Int, value: Any) Any

Atomically subtract value onto arr[i] and return the old value.

warp.atomic_sub(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
value: Any,
) Any

Atomically subtract value onto arr[i,j] and return the old value.

warp.atomic_sub(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
k: Int,
value: Any,
) Any

Atomically subtract value onto arr[i,j,k] and return the old value.

warp.atomic_sub(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Atomically subtract value onto arr[i,j,k,l] and return the old value.

warp.atomic_min(arr: Array[Any], i: Int, value: Any) Any#

Compute the minimum of value and arr[i], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(arr: Array[Any], i: Int, j: Int, value: Any) Any

Compute the minimum of value and arr[i,j], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(arr: Array[Any], i: Int, j: Int, k: Int, value: Any) Any

Compute the minimum of value and arr[i,j,k], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(
arr: Array[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Compute the minimum of value and arr[i,j,k,l], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(arr: FabricArray[Any], i: Int, value: Any) Any

Compute the minimum of value and arr[i], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(arr: FabricArray[Any], i: Int, j: Int, value: Any) Any

Compute the minimum of value and arr[i,j], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(
arr: FabricArray[Any],
i: Int,
j: Int,
k: Int,
value: Any,
) Any

Compute the minimum of value and arr[i,j,k], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(
arr: FabricArray[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Compute the minimum of value and arr[i,j,k,l], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(arr: IndexedFabricArray[Any], i: Int, value: Any) Any

Compute the minimum of value and arr[i], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
value: Any,
) Any

Compute the minimum of value and arr[i,j], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
k: Int,
value: Any,
) Any

Compute the minimum of value and arr[i,j,k], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_min(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Compute the minimum of value and arr[i,j,k,l], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(arr: Array[Any], i: Int, value: Any) Any#

Compute the maximum of value and arr[i], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(arr: Array[Any], i: Int, j: Int, value: Any) Any

Compute the maximum of value and arr[i,j], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(arr: Array[Any], i: Int, j: Int, k: Int, value: Any) Any

Compute the maximum of value and arr[i,j,k], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(
arr: Array[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Compute the maximum of value and arr[i,j,k,l], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(arr: FabricArray[Any], i: Int, value: Any) Any

Compute the maximum of value and arr[i], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(arr: FabricArray[Any], i: Int, j: Int, value: Any) Any

Compute the maximum of value and arr[i,j], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(
arr: FabricArray[Any],
i: Int,
j: Int,
k: Int,
value: Any,
) Any

Compute the maximum of value and arr[i,j,k], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(
arr: FabricArray[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Compute the maximum of value and arr[i,j,k,l], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(arr: IndexedFabricArray[Any], i: Int, value: Any) Any

Compute the maximum of value and arr[i], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
value: Any,
) Any

Compute the maximum of value and arr[i,j], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
k: Int,
value: Any,
) Any

Compute the maximum of value and arr[i,j,k], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.atomic_max(
arr: IndexedFabricArray[Any],
i: Int,
j: Int,
k: Int,
l: Int,
value: Any,
) Any

Compute the maximum of value and arr[i,j,k,l], atomically update the array, and return the old value.

The operation is only atomic on a per-component basis for vectors and matrices.

warp.lerp(a: Float, b: Float, t: Float) Float#

Linearly interpolate two values a and b using factor t, computed as a*(1-t) + b*t

warp.lerp(
a: Vector[Any, Float],
b: Vector[Any, Float],
t: Float,
) Vector[Any, Float]

Linearly interpolate two values a and b using factor t, computed as a*(1-t) + b*t

warp.lerp(
a: Matrix[Any, Any, Float],
b: Matrix[Any, Any, Float],
t: Float,
) Matrix[Any, Any, Float]

Linearly interpolate two values a and b using factor t, computed as a*(1-t) + b*t

warp.lerp(
a: Quaternion[Float],
b: Quaternion[Float],
t: Float,
) Quaternion[Float]

Linearly interpolate two values a and b using factor t, computed as a*(1-t) + b*t

warp.lerp(
a: Transformation[Float],
b: Transformation[Float],
t: Float,
) Transformation[Float]

Linearly interpolate two values a and b using factor t, computed as a*(1-t) + b*t

warp.smoothstep(a: Float, b: Float, x: Float) Float#

Smoothly interpolate between two values a and b using a factor x, and return a result between 0 and 1 using a cubic Hermite interpolation after clamping.

warp.expect_near(a: Float, b: Float, tolerance: Float) None#

Prints an error to stdout if a and b are not closer than tolerance in magnitude

warp.expect_near(a: vec3f, b: vec3f, tolerance: float32) None

Prints an error to stdout if any element of a and b are not closer than tolerance in magnitude

warp.len(a: Vector[Any, Scalar]) int#

Return the number of elements in a vector.

warp.len(a: Quaternion[Scalar]) int

Return the number of elements in a quaternion.

warp.len(a: Matrix[Any, Any, Scalar]) int

Return the number of rows in a matrix.

warp.len(a: Transformation[Float]) int

Return the number of elements in a transformation.

warp.len(a: Array[Any]) int

Return the size of the first dimension in an array.

warp.len(a: Tile) int

Return the number of rows in a tile.

Geometry#

warp.BvhQuery[source]#

alias of bvh_query_t

warp.bvh_query_aabb(id: uint64, low: vec3f, high: vec3f) bvh_query_t#

Construct an axis-aligned bounding box query against a BVH object.

This query can be used to iterate over all bounds inside a BVH.

Parameters:
  • id – The BVH identifier

  • low – The lower bound of the bounding box in BVH space

  • high – The upper bound of the bounding box in BVH space

warp.bvh_query_ray(id: uint64, start: vec3f, dir: vec3f) bvh_query_t#

Construct a ray query against a BVH object.

This query can be used to iterate over all bounds that intersect the ray.

Parameters:
  • id – The BVH identifier

  • start – The start of the ray in BVH space

  • dir – The direction of the ray in BVH space

warp.bvh_query_next(query: bvh_query_t, index: int32) bool#

Move to the next bound returned by the query. The index of the current bound is stored in index, returns False if there are no more overlapping bound.

warp.MeshQueryPoint[source]#

alias of mesh_query_point_t

warp.mesh_query_point(
id: uint64,
point: vec3f,
max_dist: float32,
) mesh_query_point_t#

Computes the closest point on the Mesh with identifier id to the given point in space.

Identifies the sign of the distance using additional ray-casts to determine if the point is inside or outside. This method is relatively robust, but does increase computational cost. See below for additional sign determination methods.

Parameters:
  • id – The mesh identifier

  • point – The point in space to query

  • max_dist – Mesh faces above this distance will not be considered by the query

warp.mesh_query_point_no_sign(
id: uint64,
point: vec3f,
max_dist: float32,
) mesh_query_point_t#

Computes the closest point on the Mesh with identifier id to the given point in space.

This method does not compute the sign of the point (inside/outside) which makes it faster than other point query methods.

Parameters:
  • id – The mesh identifier

  • point – The point in space to query

  • max_dist – Mesh faces above this distance will not be considered by the query

warp.mesh_query_furthest_point_no_sign(
id: uint64,
point: vec3f,
min_dist: float32,
) mesh_query_point_t#

Computes the furthest point on the mesh with identifier id to the given point in space.

This method does not compute the sign of the point (inside/outside).

Parameters:
  • id – The mesh identifier

  • point – The point in space to query

  • min_dist – Mesh faces below this distance will not be considered by the query

warp.mesh_query_point_sign_normal(
id: uint64,
point: vec3f,
max_dist: float32,
epsilon: float32,
) mesh_query_point_t#

Computes the closest point on the Mesh with identifier id to the given point in space.

Identifies the sign of the distance (inside/outside) using the angle-weighted pseudo normal. This approach to sign determination is robust for well conditioned meshes that are watertight and non-self intersecting. It is also comparatively fast to compute.

Parameters:
  • id – The mesh identifier

  • point – The point in space to query

  • max_dist – Mesh faces above this distance will not be considered by the query

  • epsilon – Epsilon treating distance values as equal, when locating the minimum distance vertex/face/edge, as a fraction of the average edge length, also for treating closest point as being on edge/vertex default 1e-3

warp.mesh_query_point_sign_winding_number(
id: uint64,
point: vec3f,
max_dist: float32,
accuracy: float32,
threshold: float32,
) mesh_query_point_t#

Computes the closest point on the Mesh with identifier id to the given point in space.

Identifies the sign using the winding number of the mesh relative to the query point. This method of sign determination is robust for poorly conditioned meshes and provides a smooth approximation to sign even when the mesh is not watertight. This method is the most robust and accurate of the sign determination meshes but also the most expensive.

Note

The Mesh object must be constructed with support_winding_number=True for this method to return correct results.

Parameters:
  • id – The mesh identifier

  • point – The point in space to query

  • max_dist – Mesh faces above this distance will not be considered by the query

  • accuracy – Accuracy for computing the winding number with fast winding number method utilizing second-order dipole approximation, default 2.0

  • threshold – The threshold of the winding number to be considered inside, default 0.5

warp.MeshQueryRay[source]#

alias of mesh_query_ray_t

warp.mesh_query_ray(
id: uint64,
start: vec3f,
dir: vec3f,
max_t: float32,
) mesh_query_ray_t#

Computes the closest ray hit on the Mesh with identifier id.

Parameters:
  • id – The mesh identifier

  • start – The start point of the ray

  • dir – The ray direction (should be normalized)

  • max_t – The maximum distance along the ray to check for intersections

warp.MeshQueryAABB[source]#

alias of mesh_query_aabb_t

warp.mesh_query_aabb(
id: uint64,
low: vec3f,
high: vec3f,
) mesh_query_aabb_t#

Construct an axis-aligned bounding box query against a Mesh.

This query can be used to iterate over all triangles inside a volume.

Parameters:
  • id – The mesh identifier

  • low – The lower bound of the bounding box in mesh space

  • high – The upper bound of the bounding box in mesh space

warp.mesh_query_aabb_next(query: mesh_query_aabb_t, index: int32) bool#

Move to the next triangle overlapping the query bounding box.

The index of the current face is stored in index, returns False if there are no more overlapping triangles.

warp.mesh_eval_position(
id: uint64,
face: int32,
bary_u: float32,
bary_v: float32,
) vec3f#

Evaluates the position on the Mesh given a face index and barycentric coordinates.

warp.mesh_eval_velocity(
id: uint64,
face: int32,
bary_u: float32,
bary_v: float32,
) vec3f#

Evaluates the velocity on the Mesh given a face index and barycentric coordinates.

warp.HashGridQuery[source]#

alias of hash_grid_query_t

warp.hash_grid_query(
id: uint64,
point: vec3f,
max_dist: float32,
) hash_grid_query_t#

Construct a point query against a HashGrid.

This query can be used to iterate over all neighboring point within a fixed radius from the query point.

warp.hash_grid_query_next(query: hash_grid_query_t, index: int32) bool#

Move to the next point in the hash grid query.

The index of the current neighbor is stored in index, returns False if there are no more neighbors.

warp.hash_grid_point_id(id: uint64, index: int32) int#

Return the index of a point in the HashGrid.

This can be used to reorder threads such that grid traversal occurs in a spatially coherent order.

Returns -1 if the HashGrid has not been reserved.

warp.intersect_tri_tri(
v0: vec3f,
v1: vec3f,
v2: vec3f,
u0: vec3f,
u1: vec3f,
u2: vec3f,
) int#

Tests for intersection between two triangles (v0, v1, v2) and (u0, u1, u2) using Moller’s method.

Returns > 0 if triangles intersect.

warp.mesh_get(id: uint64) Mesh#

Retrieves the mesh given its index. [1]

warp.mesh_eval_face_normal(id: uint64, face: int32) vec3f#

Evaluates the face normal the mesh given a face index.

warp.mesh_get_point(id: uint64, index: int32) vec3f#

Returns the point of the mesh given a index.

warp.mesh_get_velocity(id: uint64, index: int32) vec3f#

Returns the velocity of the mesh given a index.

warp.mesh_get_index(id: uint64, index: int32) int#

Returns the point-index of the mesh given a face-vertex index.

warp.closest_point_edge_edge(
p1: vec3f,
q1: vec3f,
p2: vec3f,
q2: vec3f,
epsilon: float32,
) vec3f#

Finds the closest points between two edges.

Returns barycentric weights to the points on each edge, as well as the closest distance between the edges.

Parameters:
  • p1 – First point of first edge

  • q1 – Second point of first edge

  • p2 – First point of second edge

  • q2 – Second point of second edge

  • epsilon – Zero tolerance for determining if points in an edge are degenerate.

  • out – vec3 output containing (s,t,d), where s in [0,1] is the barycentric weight for the first edge, t is the barycentric weight for the second edge, and d is the distance between the two edges at these two closest points.

Volumes#

warp.volume_sample(
id: uint64,
uvw: vec3f,
sampling_mode: int32,
dtype: Any,
) Any#

Sample the volume of type dtype given by id at the volume local-space point uvw.

Interpolation should be warp.Volume.CLOSEST or wp.Volume.LINEAR.

warp.volume_sample_grad(
id: uint64,
uvw: vec3f,
sampling_mode: int32,
grad: Any,
dtype: Any,
) Any#

Sample the volume given by id and its gradient at the volume local-space point uvw.

Interpolation should be warp.Volume.CLOSEST or wp.Volume.LINEAR.

warp.volume_lookup(
id: uint64,
i: int32,
j: int32,
k: int32,
dtype: Any,
) Any#

Returns the value of voxel with coordinates i, j, k for a volume of type type dtype.

If the voxel at this index does not exist, this function returns the background value.

warp.volume_store(
id: uint64,
i: int32,
j: int32,
k: int32,
value: Any,
) None#

Store value at the voxel with coordinates i, j, k.

warp.volume_sample_f(id: uint64, uvw: vec3f, sampling_mode: int32) float#

Sample the volume given by id at the volume local-space point uvw.

Interpolation should be warp.Volume.CLOSEST or wp.Volume.LINEAR.

warp.volume_sample_grad_f(
id: uint64,
uvw: vec3f,
sampling_mode: int32,
grad: vec3f,
) float#

Sample the volume and its gradient given by id at the volume local-space point uvw.

Interpolation should be warp.Volume.CLOSEST or wp.Volume.LINEAR.

warp.volume_lookup_f(id: uint64, i: int32, j: int32, k: int32) float#

Returns the value of voxel with coordinates i, j, k.

If the voxel at this index does not exist, this function returns the background value

warp.volume_store_f(
id: uint64,
i: int32,
j: int32,
k: int32,
value: float32,
) None#

Store value at the voxel with coordinates i, j, k.

warp.volume_sample_v(id: uint64, uvw: vec3f, sampling_mode: int32) vec3f#

Sample the vector volume given by id at the volume local-space point uvw.

Interpolation should be warp.Volume.CLOSEST or wp.Volume.LINEAR.

warp.volume_lookup_v(id: uint64, i: int32, j: int32, k: int32) vec3f#

Returns the vector value of voxel with coordinates i, j, k.

If the voxel at this index does not exist, this function returns the background value.

warp.volume_store_v(
id: uint64,
i: int32,
j: int32,
k: int32,
value: vec3f,
) None#

Store value at the voxel with coordinates i, j, k.

warp.volume_sample_i(id: uint64, uvw: vec3f) int#

Sample the int32 volume given by id at the volume local-space point uvw.

warp.volume_lookup_i(id: uint64, i: int32, j: int32, k: int32) int#

Returns the int32 value of voxel with coordinates i, j, k.

If the voxel at this index does not exist, this function returns the background value.

warp.volume_store_i(
id: uint64,
i: int32,
j: int32,
k: int32,
value: int32,
) None#

Store value at the voxel with coordinates i, j, k.

warp.volume_sample_index(
id: uint64,
uvw: vec3f,
sampling_mode: int32,
voxel_data: Array[Any],
background: Any,
) Any#

Sample the volume given by id at the volume local-space point uvw.

Values for allocated voxels are read from the voxel_data array, and background is used as the value of non-existing voxels. Interpolation should be warp.Volume.CLOSEST or wp.Volume.LINEAR. This function is available for both index grids and classical volumes.

warp.volume_sample_grad_index(
id: uint64,
uvw: vec3f,
sampling_mode: int32,
voxel_data: Array[Any],
background: Any,
grad: Any,
) Any#

Sample the volume given by id and its gradient at the volume local-space point uvw.

Values for allocated voxels are read from the voxel_data array, and background is used as the value of non-existing voxels. Interpolation should be warp.Volume.CLOSEST or wp.Volume.LINEAR. This function is available for both index grids and classical volumes.

warp.volume_lookup_index(id: uint64, i: int32, j: int32, k: int32) int32#

Returns the index associated to the voxel with coordinates i, j, k.

If the voxel at this index does not exist, this function returns -1. This function is available for both index grids and classical volumes.

warp.volume_index_to_world(id: uint64, uvw: vec3f) vec3f#

Transform a point uvw defined in volume index space to world space given the volume’s intrinsic affine transformation.

warp.volume_world_to_index(id: uint64, xyz: vec3f) vec3f#

Transform a point xyz defined in volume world space to the volume’s index space given the volume’s intrinsic affine transformation.

warp.volume_index_to_world_dir(id: uint64, uvw: vec3f) vec3f#

Transform a direction uvw defined in volume index space to world space given the volume’s intrinsic affine transformation.

warp.volume_world_to_index_dir(id: uint64, xyz: vec3f) vec3f#

Transform a direction xyz defined in volume world space to the volume’s index space given the volume’s intrinsic affine transformation.

Random#

warp.rand_init(seed: int32) uint32#

Initialize a new random number generator given a user-defined seed. Returns a 32-bit integer representing the RNG state.

warp.rand_init(seed: int32, offset: int32) uint32

Initialize a new random number generator given a user-defined seed and an offset.

This alternative constructor can be useful in parallel programs, where a kernel as a whole should share a seed, but each thread should generate uncorrelated values. In this case usage should be r = rand_init(seed, tid)

warp.randi(state: uint32) int#

Return a random integer in the range [0, 2^32).

warp.randi(state: uint32, low: int32, high: int32) int

Return a random integer between [low, high).

warp.randf(state: uint32) float#

Return a random float between [0.0, 1.0).

warp.randf(state: uint32, low: float32, high: float32) float

Return a random float between [low, high).

warp.randn(state: uint32) float#

Sample a normal (Gaussian) distribution of mean 0 and variance 1.

warp.sample_cdf(state: uint32, cdf: Array[float32]) int#

Inverse-transform sample a cumulative distribution function.

warp.sample_triangle(state: uint32) vec2f#

Uniformly sample a triangle. Returns sample barycentric coordinates.

warp.sample_unit_ring(state: uint32) vec2f#

Uniformly sample a ring in the xy plane.

warp.sample_unit_disk(state: uint32) vec2f#

Uniformly sample a disk in the xy plane.

warp.sample_unit_sphere_surface(state: uint32) vec3f#

Uniformly sample a unit sphere surface.

warp.sample_unit_sphere(state: uint32) vec3f#

Uniformly sample a unit sphere.

warp.sample_unit_hemisphere_surface(state: uint32) vec3f#

Uniformly sample a unit hemisphere surface.

warp.sample_unit_hemisphere(state: uint32) vec3f#

Uniformly sample a unit hemisphere.

warp.sample_unit_square(state: uint32) vec2f#

Uniformly sample a unit square.

warp.sample_unit_cube(state: uint32) vec3f#

Uniformly sample a unit cube.

warp.poisson(state: uint32, lam: float32) uint32#

Generate a random sample from a Poisson distribution.

Parameters:
  • state – RNG state

  • lam – The expected value of the distribution

warp.noise(state: uint32, x: float32) float#

Non-periodic Perlin-style noise in 1D.

warp.noise(state: uint32, xy: vec2f) float

Non-periodic Perlin-style noise in 2D.

warp.noise(state: uint32, xyz: vec3f) float

Non-periodic Perlin-style noise in 3D.

warp.noise(state: uint32, xyzt: vec4f) float

Non-periodic Perlin-style noise in 4D.

warp.pnoise(state: uint32, x: float32, px: int32) float#

Periodic Perlin-style noise in 1D.

warp.pnoise(state: uint32, xy: vec2f, px: int32, py: int32) float

Periodic Perlin-style noise in 2D.

warp.pnoise(
state: uint32,
xyz: vec3f,
px: int32,
py: int32,
pz: int32,
) float

Periodic Perlin-style noise in 3D.

warp.pnoise(
state: uint32,
xyzt: vec4f,
px: int32,
py: int32,
pz: int32,
pt: int32,
) float

Periodic Perlin-style noise in 4D.

warp.curlnoise(
state: uint32,
xy: vec2f,
octaves: uint32,
lacunarity: float32,
gain: float32,
) vec2f#

Divergence-free vector field based on the gradient of a Perlin noise function. [1]

warp.curlnoise(
state: uint32,
xyz: vec3f,
octaves: uint32,
lacunarity: float32,
gain: float32,
) vec3f

Divergence-free vector field based on the curl of three Perlin noise functions. [1]

warp.curlnoise(
state: uint32,
xyzt: vec4f,
octaves: uint32,
lacunarity: float32,
gain: float32,
) vec3f

Divergence-free vector field based on the curl of three Perlin noise functions. [1]

Other#

warp.lower_bound(arr: Array[Scalar], value: Scalar) int#

Search a sorted array arr for the closest element greater than or equal to value.

warp.lower_bound(
arr: Array[Scalar],
arr_begin: int32,
arr_end: int32,
value: Scalar,
) int

Search a sorted array arr in the range [arr_begin, arr_end) for the closest element greater than or equal to value.

warp.bit_and(a: Int, b: Int) Int#
warp.bit_or(a: Int, b: Int) Int#
warp.bit_xor(a: Int, b: Int) Int#
warp.lshift(a: Int, b: Int) Int#
warp.rshift(a: Int, b: Int) Int#
warp.invert(a: Int) Int#

Operators#

warp.add(a: Scalar, b: Scalar) Scalar#
warp.add(
a: Vector[Any, Scalar],
b: Vector[Any, Scalar],
) Vector[Any, Scalar]
warp.add(
a: Quaternion[Scalar],
b: Quaternion[Scalar],
) Quaternion[Scalar]
warp.add(
a: Matrix[Any, Any, Scalar],
b: Matrix[Any, Any, Scalar],
) Matrix[Any, Any, Scalar]
warp.add(
a: Transformation[Scalar],
b: Transformation[Scalar],
) Transformation[Scalar]
warp.add(a: Tile, b: Tile) Tile

Add each element of two tiles together

warp.sub(a: Scalar, b: Scalar) Scalar#
warp.sub(
a: Vector[Any, Scalar],
b: Vector[Any, Scalar],
) Vector[Any, Scalar]
warp.sub(
a: Matrix[Any, Any, Scalar],
b: Matrix[Any, Any, Scalar],
) Matrix[Any, Any, Scalar]
warp.sub(
a: Quaternion[Scalar],
b: Quaternion[Scalar],
) Quaternion[Scalar]
warp.sub(
a: Transformation[Scalar],
b: Transformation[Scalar],
) Transformation[Scalar]
warp.sub(a: Tile, b: Tile) Tile

Subtract each element b from a

warp.mul(a: Scalar, b: Scalar) Scalar#
warp.mul(a: Vector[Any, Scalar], b: Scalar) Vector[Any, Scalar]
warp.mul(a: Scalar, b: Vector[Any, Scalar]) Vector[Any, Scalar]
warp.mul(a: Quaternion[Scalar], b: Scalar) Quaternion[Scalar]
warp.mul(a: Scalar, b: Quaternion[Scalar]) Quaternion[Scalar]
warp.mul(
a: Quaternion[Scalar],
b: Quaternion[Scalar],
) Quaternion[Scalar]
warp.mul(a: Scalar, b: Matrix[Any, Any, Scalar]) Matrix[Any, Any, Scalar]
warp.mul(a: Matrix[Any, Any, Scalar], b: Scalar) Matrix[Any, Any, Scalar]
warp.mul(
a: Matrix[Any, Any, Scalar],
b: Vector[Any, Scalar],
) Vector[Any, Scalar]
warp.mul(
a: Vector[Any, Scalar],
b: Matrix[Any, Any, Scalar],
) Vector[Any, Scalar]
warp.mul(
a: Matrix[Any, Any, Scalar],
b: Matrix[Any, Any, Scalar],
) Matrix[Any, Any, Scalar]
warp.mul(
a: Transformation[Scalar],
b: Transformation[Scalar],
) Transformation[Scalar]
warp.mul(a: Scalar, b: Transformation[Scalar]) Transformation[Scalar]
warp.mul(a: Transformation[Scalar], b: Scalar) Transformation[Scalar]
warp.mul(x: Tile, y: Scalar) Tile

Multiply each element of a tile by a scalar

warp.mul(x: Scalar, y: Tile) Tile

Multiply each element of a tile by a scalar

warp.mod(a: Scalar, b: Scalar) Scalar#

Modulo operation using truncated division.

warp.mod(a: Vector[Any, Scalar], b: Vector[Any, Scalar]) Scalar

Modulo operation using truncated division.

warp.div(a: Scalar, b: Scalar) Scalar#
warp.div(a: Vector[Any, Scalar], b: Scalar) Vector[Any, Scalar]
warp.div(a: Scalar, b: Vector[Any, Scalar]) Vector[Any, Scalar]
warp.div(a: Matrix[Any, Any, Scalar], b: Scalar) Matrix[Any, Any, Scalar]
warp.div(a: Scalar, b: Matrix[Any, Any, Scalar]) Matrix[Any, Any, Scalar]
warp.div(a: Quaternion[Scalar], b: Scalar) Quaternion[Scalar]
warp.div(a: Scalar, b: Quaternion[Scalar]) Quaternion[Scalar]
warp.floordiv(a: Scalar, b: Scalar) Scalar#
warp.pos(x: Scalar) Scalar#
warp.pos(x: Vector[Any, Scalar]) Vector[Any, Scalar]
warp.pos(x: Quaternion[Scalar]) Quaternion[Scalar]
warp.pos(x: Matrix[Any, Any, Scalar]) Matrix[Any, Any, Scalar]
warp.neg(x: Scalar) Scalar#
warp.neg(x: Vector[Any, Scalar]) Vector[Any, Scalar]
warp.neg(x: Quaternion[Scalar]) Quaternion[Scalar]
warp.neg(x: Matrix[Any, Any, Scalar]) Matrix[Any, Any, Scalar]
warp.neg(x: Tile) Tile

Negate each element of a tile

warp.unot(a: bool) bool#
warp.unot(a: int8) bool
warp.unot(a: uint8) bool
warp.unot(a: int16) bool
warp.unot(a: uint16) bool
warp.unot(a: int32) bool
warp.unot(a: uint32) bool
warp.unot(a: int64) bool
warp.unot(a: uint64) bool
warp.unot(a: Array[Any]) bool

Code Generation#

warp.static(expr: Any) Any[source]#

Evaluate a static Python expression and replaces it with its result.

See the code generation guide for more details.

The inner expression must only reference variables that are available from the current scope where the Warp kernel or function containing the expression is defined, which includes constant variables and variables captured in the current closure in which the function or kernel is implemented. The return type of the expression must be either a Warp function, a string, or a type that is supported inside Warp kernels and functions (excluding Warp arrays since they cannot be created in a Warp kernel at the moment).

Footnotes