Making Tensors#

make_tensor is a utility function for creating tensors. Where possible, using make_tensor is preferred over directly declaring a tensor_t since it allows the tensor type to change in the future without breaking. See Creating Tensors for a detailed walkthrough on creating tensors.

make_tensor provides numerous overloads for different arguments and use cases:

Return by Value#

template<typename T, int RANK>
auto matx::make_tensor(const index_t (&shape)[RANK], matxMemorySpace_t space = MATX_MANAGED_MEMORY, cudaStream_t stream = 0)#

Create a tensor with a C array for the shape using implicitly-allocated memory

Parameters:
  • shape – Shape of tensor

  • space – memory space to allocate in. Default is manged memory.

  • stream – cuda stream to allocate in (only applicable to async allocations)

Returns:

New tensor

template<typename TensorType, std::enable_if_t<is_tensor_view_v<TensorType>, bool> = true>
void matx::make_tensor(TensorType &tensor, const index_t (&shape)[TensorType::Rank()], matxMemorySpace_t space = MATX_MANAGED_MEMORY, cudaStream_t stream = 0)#

Create a tensor with a C array for the shape using implicitly-allocated memory

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • shape – Shape of tensor

  • space – memory space to allocate in. Default is manged memory.

  • stream – cuda stream to allocate in (only applicable to async allocations)

template<typename T, typename ShapeType, std::enable_if_t<!is_matx_shape_v<ShapeType> && !is_matx_descriptor_v<ShapeType> && !std::is_array_v<typename remove_cvref<ShapeType>::type>, bool> = true>
auto matx::make_tensor(ShapeType &&shape, matxMemorySpace_t space = MATX_MANAGED_MEMORY, cudaStream_t stream = 0)#

Create a tensor from a conforming container type

Conforming containers have sequential iterators defined (both const and non-const). cuda::std::array and std::vector meet this criteria.

Parameters:
  • shape – Shape of tensor

  • space – memory space to allocate in. Default is managed memory.

  • stream – cuda stream to allocate in (only applicable to async allocations)

Returns:

New tensor

template<typename TensorType, typename ShapeType, std::enable_if_t<is_tensor_view_v<TensorType> && !std::is_array_v<typename remove_cvref<ShapeType>::type>, bool> = true>
auto matx::make_tensor(TensorType &tensor, ShapeType &&shape, matxMemorySpace_t space = MATX_MANAGED_MEMORY, cudaStream_t stream = 0)#

Create a tensor from a conforming container type

Conforming containers have sequential iterators defined (both const and non-const). cuda::std::array and std::vector meet this criteria.

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • shape – Shape of tensor

  • space – memory space to allocate in. Default is managed memory.

  • stream – cuda stream to allocate in (only applicable to async allocations)

Returns:

New tensor

template<typename TensorType, std::enable_if_t<is_tensor_view_v<TensorType>, bool> = true>
auto matx::make_tensor(TensorType &tensor, matxMemorySpace_t space = MATX_MANAGED_MEMORY, cudaStream_t stream = 0)#

Create a 0D tensor with implicitly-allocated memory.

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • space – memory space to allocate in. Default is managed memory memory.

  • stream – cuda stream to allocate in (only applicable to async allocations)

Returns:

New tensor

template<typename T, int RANK>
auto matx::make_tensor(T *data, const index_t (&shape)[RANK], bool owning = false)#

Create a tensor with user-defined memory and a C array

Parameters:
  • data – Pointer to device data

  • shape – Shape of tensor

  • owning – If this class owns memory of data

Returns:

New tensor

template<typename TensorType, std::enable_if_t<is_tensor_view_v<TensorType>, bool> = true>
auto matx::make_tensor(TensorType &tensor, typename TensorType::value_type *data, const index_t (&shape)[TensorType::Rank()])#

Create a tensor with user-defined memory and a C array

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • data – Pointer to device data

  • shape – Shape of tensor

Returns:

New tensor

template<typename T, typename ShapeType, std::enable_if_t<!is_matx_descriptor_v<ShapeType> && !std::is_array_v<typename remove_cvref<ShapeType>::type>, bool> = true>
auto matx::make_tensor(T *data, ShapeType &&shape, bool owning = false)#

Create a tensor with user-defined memory and conforming shape type

Parameters:
  • data – Pointer to device data

  • shape – Shape of tensor

  • owning – If this class owns memory of data

Returns:

New tensor

template<typename TensorType, std::enable_if_t<is_tensor_view_v<TensorType>, bool> = true>
auto matx::make_tensor(TensorType &tensor, typename TensorType::value_type *data, typename TensorType::shape_container &&shape)#

Create a tensor with user-defined memory and conforming shape type

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • data – Pointer to device data

  • shape – Shape of tensor

Returns:

New tensor

template<typename TensorType, std::enable_if_t<is_tensor_view_v<TensorType>, bool> = true>
auto matx::make_tensor(TensorType &tensor, typename TensorType::value_type *ptr)#

Create a 0D tensor with user-defined memory

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • ptr – Pointer to data

Returns:

New tensor

template<typename Storage, typename ShapeType, std::enable_if_t<is_matx_storage_v<Storage> && !is_matx_descriptor_v<ShapeType> && !std::is_array_v<typename remove_cvref<ShapeType>::type>, bool> = true>
auto matx::make_tensor(Storage &&s, ShapeType &&shape)#

Create a tensor with user-defined memory, custom storage, and conforming shape type

Parameters:
  • s – Storage object

  • shape – Shape of tensor

Returns:

New tensor

template<typename TensorType, std::enable_if_t<is_tensor_view_v<TensorType>, bool> = true>
auto matx::make_tensor(TensorType &tensor, typename TensorType::storage_type &&s, typename TensorType::shape_container &&shape)#

Create a tensor with user-defined memory, custom storage, and conforming shape type

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • s – Storage object

  • shape – Shape of tensor

Returns:

New tensor

template<typename T, typename D, std::enable_if_t<is_matx_descriptor_v<typename remove_cvref<D>::type>, bool> = true>
auto matx::make_tensor(T *const data, D &&desc, bool owning = false)#

Create a tensor with user-defined memory and an existing descriptor

Parameters:
  • data – Pointer to device data

  • desc – Tensor descriptor (tensor_desc_t)

  • owning – If this class owns memory of data

Returns:

New tensor

template<typename TensorType, std::enable_if_t<is_tensor_view_v<TensorType>, bool> = true>
auto matx::make_tensor(TensorType &tensor, typename TensorType::value_type *const data, typename TensorType::desc_type &&desc)#

Create a tensor with user-defined memory and an existing descriptor

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • data – Pointer to device data

  • desc – Tensor descriptor (tensor_desc_t)

Returns:

New tensor

template<typename T, typename D, std::enable_if_t<is_matx_descriptor_v<typename remove_cvref<D>::type>, bool> = true>
auto matx::make_tensor(D &&desc, matxMemorySpace_t space = MATX_MANAGED_MEMORY, cudaStream_t stream = 0)#

Create a tensor with implicitly-allocated memory and an existing descriptor

Parameters:
  • desc – Tensor descriptor (tensor_desc_t)

  • space – memory space to allocate in. Default is managed memory memory.

  • stream – cuda stream to allocate in (only applicable to async allocations)

Returns:

New tensor

template<typename TensorType, std::enable_if_t<is_tensor_view_v<TensorType> && is_matx_descriptor_v<typename TensorType::desc_type>, bool> = true>
auto matx::make_tensor(TensorType &&tensor, typename TensorType::desc_type &&desc, matxMemorySpace_t space = MATX_MANAGED_MEMORY, cudaStream_t stream = 0)#

Create a tensor with implicitly-allocated memory and an existing descriptor

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • desc – Tensor descriptor (tensor_desc_t)

  • space – memory space to allocate in. Default is managed memory memory.

  • stream – cuda stream to allocate in (only applicable to async allocations)

Returns:

New tensor

template<typename T, int RANK>
auto matx::make_tensor(T *const data, const index_t (&shape)[RANK], const index_t (&strides)[RANK], bool owning = false)#

Create a tensor with user-defined memory and C-array shapes and strides

Parameters:
  • data – Pointer to device data

  • shape – Shape of tensor

  • strides – Strides of tensor

  • owning – If this class owns memory of data

Returns:

New tensor

template<typename TensorType, std::enable_if_t<is_tensor_view_v<TensorType>, bool> = true>
auto matx::make_tensor(TensorType &tensor, typename TensorType::value_type *const data, const index_t (&shape)[TensorType::Rank()], const index_t (&strides)[TensorType::Rank()])#

Create a tensor with user-defined memory and C-array shapes and strides

Parameters:
  • tensor – Tensor object to store newly-created tensor into

  • data – Pointer to device data

  • shape – Shape of tensor

  • strides – Strides of tensor

Returns:

New tensor

Return by Pointer#

template<typename T, int RANK>
auto matx::make_tensor_p(const index_t (&shape)[RANK], matxMemorySpace_t space = MATX_MANAGED_MEMORY, cudaStream_t stream = 0)#

Create a tensor with a C array for the shape using implicitly-allocated memory. Caller is responsible for deleting the tensor.

Parameters:
  • shape – Shape of tensor

  • space – memory space to allocate in. Default is managed memory.

  • stream – cuda stream to allocate in (only applicable to async allocations)

Returns:

Pointer to new tensor

template<typename T, typename ShapeType, std::enable_if_t<!is_matx_shape_v<ShapeType> && !std::is_array_v<typename remove_cvref<ShapeType>::type>, bool> = true>
auto matx::make_tensor_p(ShapeType &&shape, matxMemorySpace_t space = MATX_MANAGED_MEMORY, cudaStream_t stream = 0)#

Create a tensor from a conforming container type

Conforming containers have sequential iterators defined (both const and non-const). cuda::std::array and std::vector meet this criteria. Caller is responsible for deleting tensor.

Parameters:
  • shape – Shape of tensor

  • space – memory space to allocate in. Default is managed memory memory.

  • stream – cuda stream to allocate in (only applicable to async allocations)

Returns:

Pointer to new tensor

template<typename T, typename ShapeType, std::enable_if_t<!is_matx_descriptor_v<ShapeType> && !std::is_array_v<typename remove_cvref<ShapeType>::type>, bool> = true>
auto matx::make_tensor_p(T *const data, ShapeType &&shape, bool owning = false)#

Create a tensor with user-defined memory and conforming shape type

Parameters:
  • data – Pointer to device data

  • shape – Shape of tensor

  • owning – If this class owns memory of data

Returns:

New tensor