corr#
Cross-correlation of two inputs
-
template<typename In1Type, typename In2Type>
__MATX_INLINE__ auto matx::corr(const In1Type &i1, const In2Type &i2, matxConvCorrMode_t mode, matxConvCorrMethod_t method)# Correlate two input operators.
- Template Parameters:
In1Type – Type of first input
In2Type – Type of second input
- Parameters:
i1 – First input operator
i2 – Second input operator
mode – Mode of correlation
method – Method for correlation
-
template<typename In1Type, typename In2Type>
__MATX_INLINE__ auto matx::corr(const In1Type &i1, const In2Type &i2, const int32_t (&axis)[1], matxConvCorrMode_t mode, matxConvCorrMethod_t method)# Correlate two input operators.
- Template Parameters:
In1Type – Type of first input
In2Type – Type of second input
- Parameters:
i1 – First input operator
i2 – Second input operator
axis – the axis to perform correlation
mode – Mode of correlation
method – Method for correlation
Convolution/Correlation Mode#
The mode
parameter specifies how the output size is determined:
MATX_C_MODE_FULL
: Keep all elements including ramp-up/down (output size = N + M - 1)MATX_C_MODE_SAME
: Keep only elements where entire filter was present (output size = max(N, M))MATX_C_MODE_VALID
: Keep only elements with full overlap (output size = max(N, M) - min(N, M) + 1)
Convolution/Correlation Method#
The method
parameter specifies the algorithm to use:
MATX_C_METHOD_DIRECT
: Direct convolution using sliding window approachMATX_C_METHOD_FFT
: FFT-based convolution using the convolution theorem (may be faster for large inputs)
Examples#
// Full correlation mode with direct correlation
(this->cv_full_even = corr(this->av, this->bv_even, MATX_C_MODE_FULL, MATX_C_METHOD_DIRECT)).run(this->exec);