flatten¶
- nvtripy.flatten(input: Tensor, start_dim: int = 0, end_dim: int = -1) Tensor [source]¶
Flattens the input tensor from start_dim to end_dim.
- Parameters:
input (Tensor) – [dtype=T1] The input tensor to be flattened.
start_dim (int) – The first dimension to flatten (default is 0).
end_dim (int) – The last dimension to flatten (default is -1, which includes the last dimension).
- Returns:
[dtype=T1] A flattened tensor.
- Return type:
Example: Flatten All Dimensions
1input = tp.iota((1, 2, 1), dtype=tp.float32) 2output = tp.flatten(input)
>>> input tensor( [[[0.0000], [0.0000]]], dtype=float32, loc=gpu:0, shape=(1, 2, 1)) >>> output tensor([0.0000, 0.0000], dtype=float32, loc=gpu:0, shape=(2,))
Example: Flatten Starting from First Dimension
1input = tp.iota((2, 3, 4), dtype=tp.float32) 2output = tp.flatten(input, start_dim=1)
>>> input tensor( [[[0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000]], [[1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000]]], dtype=float32, loc=gpu:0, shape=(2, 3, 4)) >>> output tensor( [[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000]], dtype=float32, loc=gpu:0, shape=(2, 12))
Example: Flatten a Specific Range of Dimensions
1input = tp.iota((2, 3, 4, 5), dtype=tp.float32) 2output = tp.flatten(input, start_dim=1, end_dim=2)
>>> input tensor( [[[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000]], [[0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000]], [[0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]], [[[1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]], [[1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]], [[1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]]]], dtype=float32, loc=gpu:0, shape=(2, 3, 4, 5)) >>> output tensor( [[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], ..., [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000]], [[1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], ..., [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]]], dtype=float32, loc=gpu:0, shape=(2, 12, 5))