silu

nvtripy.silu(input: Tensor) Tensor[source]

Applies the Sigmoid Linear Unit (SiLU) function to each element of the input tensor. This function is also known as the swish function.

\(\text{silu}(x) = x \cdot \sigma (x)\) where \(\sigma (x)_i = \frac{1}{1 + \exp{-x_i}}\)

Parameters:

input (Tensor) – [dtype=T1] The input tensor.

Returns:

[dtype=T1] A tensor of the same shape as the input.

Return type:

Tensor

TYPE CONSTRAINTS:
Example
1input = tp.Tensor([1.0, 2.0, 3.0, 4.0], dtype=tp.float32)
2output = tp.silu(input)
Local Variables
>>> input
tensor([1.0000, 2.0000, 3.0000, 4.0000], dtype=float32, loc=gpu:0, shape=(4,))

>>> output
tensor([0.7311, 1.7616, 2.8577, 3.9281], dtype=float32, loc=gpu:0, shape=(4,))