InputInfo¶
- class nvtripy.InputInfo(shape: Sequence[NamedDimension | int | DimensionSize | Tuple[int | DimensionSize, int | DimensionSize, int | DimensionSize]], dtype: dtype)[source]¶
Bases:
object
Captures information about an input to a compiled function.
- Parameters:
shape (Sequence[NamedDimension | int | DimensionSize | Tuple[int | DimensionSize, int | DimensionSize, int | DimensionSize]]) – The shape of the input. To indicate dynamic dimensions, provide the minimum, optimum, and maximum values for the dimension.
dtype (dtype) – The data type of the input.
Example
1inp = tp.InputInfo((2, 4), dtype=tp.float32)
Local Variables¶>>> inp InputInfo<ShapeBounds(min=(2, 4), opt=(2, 4), max=(2, 4)), dimension names: {}, dtype: float32>
Example: Dynamic Dimensions
1# The first dimension will support values in the range [1, 3], 2# optimizing for a size of 2. 3inp = tp.InputInfo(((1, 2, 3), 4), dtype=tp.float32)
Local Variables¶>>> inp InputInfo<ShapeBounds(min=(1, 4), opt=(2, 4), max=(3, 4)), dimension names: {}, dtype: float32>
Example: Naming Dynamic Dimensions
1# Dimensions with the same name must be equal at runtime. 2# This knowledge can help the compiler optimize better. 3window_size = tp.NamedDimension("window_size", 3, 5, 7) 4 5inp = tp.InputInfo((1, window_size, window_size), dtype=tp.float32)
Local Variables¶>>> window_size NamedDimension<name: 'window_size', bounds: (3, 5, 7)> >>> inp InputInfo<ShapeBounds(min=(1, 3, 3), opt=(1, 5, 5), max=(1, 7, 7)), dimension names: {1: 'window_size', 2: 'window_size'}, dtype: float32>
- dimension_names: Dict[int, str]¶
A mapping of dimension indices to their names, if set.
- shape_bounds: ShapeBounds¶
The shape bounds of the input.
See also: