dequantize¶
- nvtripy.dequantize(input: Tensor, scale: Tensor | Number | Sequence[Number] | Sequence[Sequence[Number]], dtype: dtype, dim: int | Any = None) Tensor [source]¶
Dequantizes the input tensor.
If
dim
is not given, this function will perform “per-tensor” or “block-wise” dequantization.For “per-tensor” dequantization, the
scale
must be a scalar tensor or a single python number.For “block-wise” dequantization, the
dtype
must only benvtripy.int4
. Theinput
tensor must only have 2 dimensions, e.g.[D0, D1]
. Thescale
must also be a 2-D tensor or a 2-D python sequence. The first dimension ofscale
must be able to divideD0
, where “blocking” is performed. The second dimension ofscale
must equal toD1
.
If
dim
is given, this function will perform “per-channel” dequantization. Thescale
must be a 1-D tensor or a python sequence both with size ofinput.shape[dim]
.- Parameters:
input (Tensor) – [dtype=T1] The input tensor with a valid quantized data type.
scale (Tensor | Number | Sequence[Number] | Sequence[Sequence[Number]]) – [dtype=T2] The scale tensor. Must be a constant tensor.
dtype (dtype) – [dtype=T2] The data type after dequantization. Must be
nvtripy.float32
ornvtripy.float16
.dim (int | Any) – The dimension for per-channel dequantization
- Returns:
[dtype=T2] The dequantized tensor.
- Return type:
Example: Per-tensor dequantization
1input = tp.Tensor([1, 2, 3], dtype=tp.int8) 2scale = 0.99872 3output = tp.dequantize(input, scale, tp.float32)
>>> input tensor([1, 2, 3], dtype=int8, loc=gpu:0, shape=(3,)) >>> output tensor([0.9987, 1.9974, 2.9962], dtype=float32, loc=gpu:0, shape=(3,))
Example: Per-channel dequantization
1input = tp.Tensor([[1, 2, 3], [4, 5, 6]], dtype=tp.int8) 2scale = [0.99872, 0.96125] 3output = tp.dequantize(input, scale, tp.float32, dim=0)
>>> input tensor( [[1, 2, 3], [4, 5, 6]], dtype=int8, loc=gpu:0, shape=(2, 3)) >>> output tensor( [[0.9987, 1.9974, 2.9962], [3.8450, 4.8063, 5.7675]], dtype=float32, loc=gpu:0, shape=(2, 3))
Example: Block-wise dequantization
1input = tp.Tensor([[0, 1], [2, 3]], dtype=tp.float32) 2scale = [[1.0, 1.0]] 3quant = tp.quantize(input, scale, tp.int4) 4output = tp.dequantize(quant, scale, tp.float32)
>>> output tensor( [[0.0000, 1.0000], [2.0000, 3.0000]], dtype=float32, loc=gpu:0, shape=(2, 2))
See also