flip¶
- nvtripy.flip(input: Tensor, dims: int | Sequence[int] | None = None) Tensor [source]¶
Return a new tensor with the same value as the input tensor, with the values in the dimension(s) given in dims reversed. If a value in dims is negative, it is counted backwards from the last dimension.
Note that slicing with a negative step size is implemented using flip; e.g., t[::-1] is equivalent to flipping that dimension.
- Parameters:
input (Tensor) – [dtype=T1] The input tensor.
dims (int | Sequence[int] | None) – The dimensions that should be reversed. If None, all dimensions will be reversed. If a given dimension is negative, it will be counted backwards from the last dimension.
- Returns:
[dtype=T1] A new tensor with the same values as input, with the specified dimensions reversed.
- Return type:
Example
1input = tp.reshape(tp.arange(10), (2, 5)) 2output = tp.flip(input) # equivalent to tp.flip(input, dims=[0, 1])
>>> input tensor( [[0.0000, 1.0000, 2.0000, 3.0000, 4.0000], [5.0000, 6.0000, 7.0000, 8.0000, 9.0000]], dtype=float32, loc=gpu:0, shape=(2, 5)) >>> output tensor( [[9.0000, 8.0000, 7.0000, 6.0000, 5.0000], [4.0000, 3.0000, 2.0000, 1.0000, 0.0000]], dtype=float32, loc=gpu:0, shape=(2, 5))
Example: Reversing only one dimension.
1input = tp.reshape(tp.arange(10), (2, 5)) 2output = tp.flip(input, dims=-1)
>>> input tensor( [[0.0000, 1.0000, 2.0000, 3.0000, 4.0000], [5.0000, 6.0000, 7.0000, 8.0000, 9.0000]], dtype=float32, loc=gpu:0, shape=(2, 5)) >>> output tensor( [[4.0000, 3.0000, 2.0000, 1.0000, 0.0000], [9.0000, 8.0000, 7.0000, 6.0000, 5.0000]], dtype=float32, loc=gpu:0, shape=(2, 5))