softmax

nvtripy.softmax(input: Tensor, dim: int = None) Tensor[source]

Applies the softmax function to the input tensor:

\(\text{softmax}(x_{i}) = \Large \frac{e^{x_{i}}}{\sum_{j=1}^N e^{x_{j}}} \normalsize for\ i=1,2,\dots,N\)

where \(x_{i}\) is the \(i^{th}\) element along dimension dim and \(N\) is the size of the dimension.

Effectively, for each slice along dim, elements are scaled such that they lie in the range \([0, 1]\) and sum to 1.

Parameters:
  • input (Tensor) – [dtype=T1] The input tensor.

  • dim (int) – The dimension along which softmax will be computed. If this is None, softmax is applied over the whole input array.

Returns:

[dtype=T1] A tensor of the same shape as the input.

Return type:

Tensor

TYPE CONSTRAINTS:
Example
1input = tp.iota([2, 2], dtype=tp.float32)
2output = tp.softmax(input, dim=0)
Local Variables
>>> input
tensor(
    [[0.0000, 0.0000],
     [1.0000, 1.0000]], 
    dtype=float32, loc=gpu:0, shape=(2, 2))

>>> output
tensor(
    [[0.2689, 0.2689],
     [0.7311, 0.7311]], 
    dtype=float32, loc=gpu:0, shape=(2, 2))