Linear¶
- class nvtripy.Linear(in_features: int, out_features: int, bias: bool = True, dtype: dtype = float32, quant_dtype: dtype | None = None, weight_quant_dim: int | None = None)[source]¶
Bases:
Module
Applies a linear transformation to the input:
\(Linear(x) = xW^T + b\)
- Parameters:
in_features (int) – Size of input features.
out_features (int) – Size of output features.
bias (Tensor | None) – Whether to include the bias term.
dtype (dtype) – The data type to use for the weight and bias parameters.
quant_dtype (dtype | None) – The data type for quantization.
weight_quant_dim (int | None) – The dimension along which to apply the weight quantization scale.
Example
1linear = tp.Linear(3, 4) 2 3input = tp.iota((2, 3)) 4output = linear(input)
>>> linear Linear( weight: Parameter = (shape=[4, 3], dtype=float32), bias: Parameter = (shape=[4], dtype=float32), ) >>> linear.state_dict() { weight: tensor( [[0.0000, 1.0000, 2.0000], [3.0000, 4.0000, 5.0000], [6.0000, 7.0000, 8.0000], [9.0000, 10.0000, 11.0000]], dtype=float32, loc=gpu:0, shape=(4, 3)), bias: tensor([0.0000, 1.0000, 2.0000, 3.0000], dtype=float32, loc=gpu:0, shape=(4,)), } >>> input tensor( [[0.0000, 0.0000, 0.0000], [1.0000, 1.0000, 1.0000]], dtype=float32, loc=gpu:0, shape=(2, 3)) >>> output tensor( [[0.0000, 1.0000, 2.0000, 3.0000], [3.0000, 13.0000, 23.0000, 33.0000]], dtype=float32, loc=gpu:0, shape=(2, 4))
- load_state_dict(state_dict: Dict[str, Tensor], strict: bool = True) Tuple[Set[str], Set[str]] ¶
Loads parameters from the provided
state_dict
into the current module. This will recurse over any nested child modules.- Parameters:
- Returns:
missing_keys: keys that are expected by this module but not provided in
state_dict
.unexpected_keys: keys that are not expected by this module but provided in
state_dict
.
- Return type:
A
tuple
of twoset
s of strings representing
Example
1# Using the `module` and `state_dict` from the `state_dict()` example: 2print(f"Before: {module.param}") 3 4state_dict["param"] = tp.zeros((2,), dtype=tp.float32) 5module.load_state_dict(state_dict) 6 7print(f"After: {module.param}")
Before: tensor([1.0000, 1.0000], dtype=float32, loc=gpu:0, shape=(2,)) After: tensor([0.0000, 0.0000], dtype=float32, loc=gpu:0, shape=(2,))
See also
- named_children() Iterator[Tuple[str, Module]] ¶
Returns an iterator over immediate children of this module, yielding tuples containing the name of the child module and the child module itself.
- Returns:
An iterator over tuples containing the name of the child module and the child module itself.
- Return type:
Iterator[Tuple[str, Module]]
Example
1class StackedLinear(tp.Module): 2 def __init__(self): 3 super().__init__() 4 self.linear1 = tp.Linear(2, 2) 5 self.linear2 = tp.Linear(2, 2) 6 7 8stacked_linear = StackedLinear() 9 10for name, module in stacked_linear.named_children(): 11 print(f"{name}: {type(module).__name__}")
linear1: Linear linear2: Linear
- named_parameters() Iterator[Tuple[str, Tensor]] ¶
- Returns:
An iterator over tuples containing the name of a parameter and the parameter itself.
- Return type:
Iterator[Tuple[str, Tensor]]
Example
1class MyModule(tp.Module): 2 def __init__(self): 3 super().__init__() 4 self.alpha = tp.Tensor(1) 5 self.beta = tp.Tensor(2) 6 7 8linear = MyModule() 9 10for name, parameter in linear.named_parameters(): 11 print(f"{name}: {parameter}")
alpha: tensor(1, dtype=int32, loc=gpu:0, shape=()) beta: tensor(2, dtype=int32, loc=gpu:0, shape=())
- state_dict() Dict[str, Tensor] ¶
Returns a dictionary mapping names to parameters in the module. This will recurse over any nested child modules.
- Returns:
A dictionary mapping names to parameters.
- Return type:
Dict[str, Tensor]
Example
1class MyModule(tp.Module): 2 def __init__(self): 3 super().__init__() 4 self.param = tp.ones((2,), dtype=tp.float32) 5 self.linear1 = tp.Linear(2, 2) 6 self.linear2 = tp.Linear(2, 2) 7 8 9module = MyModule() 10 11state_dict = module.state_dict()
>>> state_dict { param: tensor([1.0000, 1.0000], dtype=float32, loc=gpu:0, shape=(2,)), linear1.weight: tensor( [[0.0000, 1.0000], [2.0000, 3.0000]], dtype=float32, loc=gpu:0, shape=(2, 2)), linear1.bias: tensor([0.0000, 1.0000], dtype=float32, loc=gpu:0, shape=(2,)), linear2.weight: tensor( [[0.0000, 1.0000], [2.0000, 3.0000]], dtype=float32, loc=gpu:0, shape=(2, 2)), linear2.bias: tensor([0.0000, 1.0000], dtype=float32, loc=gpu:0, shape=(2,)), }
- weight_quant_dim: int | None¶
The dimension along which to apply the weight quantization scale.