triu¶
- nvtripy.triu(tensor: Tensor, diagonal: int = 0) Tensor [source]¶
Returns the upper triangular part of each \([M, N]\) matrix in the tensor, with all other elements set to 0. If the tensor has more than two dimensions, it is treated as a batch of matrices.
- Parameters:
tensor (Tensor) – The nvtripy tensor to operate on.
diagonal (int) –
The diagonal below which to zero elements.
diagonal=0
indicates the main diagonal which is defined by the set of indices \({{(i, i)}}\) where \(i \in [0, min(M, N))\).Positive values indicate the diagonal which is that many diagonals above the main one, while negative values indicate one which is below.
- Returns:
A tensor of the same shape as this tensor.
- Return type:
Example: Main Diagonal
1input = tp.iota((2, 1, 3, 3), dim=2) + 1.0 2output = tp.triu(input)
>>> input tensor( [[[[1.0000, 1.0000, 1.0000], [2.0000, 2.0000, 2.0000], [3.0000, 3.0000, 3.0000]]], [[[1.0000, 1.0000, 1.0000], [2.0000, 2.0000, 2.0000], [3.0000, 3.0000, 3.0000]]]], dtype=float32, loc=gpu:0, shape=(2, 1, 3, 3)) >>> output tensor( [[[[1.0000, 1.0000, 1.0000], [0.0000, 2.0000, 2.0000], [0.0000, 0.0000, 3.0000]]], [[[1.0000, 1.0000, 1.0000], [0.0000, 2.0000, 2.0000], [0.0000, 0.0000, 3.0000]]]], dtype=float32, loc=gpu:0, shape=(2, 1, 3, 3))
Example: Two Diagonals Above Main
1output = tp.triu(input, diagonal=2)
>>> input tensor( [[1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [2.0000, 2.0000, 2.0000, 2.0000, 2.0000], [3.0000, 3.0000, 3.0000, 3.0000, 3.0000], [4.0000, 4.0000, 4.0000, 4.0000, 4.0000], [5.0000, 5.0000, 5.0000, 5.0000, 5.0000]], dtype=float32, loc=gpu:0, shape=(5, 5)) >>> output tensor( [[0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.0000, 0.0000, 0.0000, 2.0000, 2.0000], [0.0000, 0.0000, 0.0000, 0.0000, 3.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000]], dtype=float32, loc=gpu:0, shape=(5, 5))
Example: One Diagonal Below Main
1output = tp.triu(input, diagonal=-1)
>>> input tensor( [[1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [2.0000, 2.0000, 2.0000, 2.0000, 2.0000], [3.0000, 3.0000, 3.0000, 3.0000, 3.0000], [4.0000, 4.0000, 4.0000, 4.0000, 4.0000], [5.0000, 5.0000, 5.0000, 5.0000, 5.0000]], dtype=float32, loc=gpu:0, shape=(5, 5)) >>> output tensor( [[1.0000, 1.0000, 1.0000, 1.0000, 1.0000], [2.0000, 2.0000, 2.0000, 2.0000, 2.0000], [0.0000, 3.0000, 3.0000, 3.0000, 3.0000], [0.0000, 0.0000, 4.0000, 4.0000, 4.0000], [0.0000, 0.0000, 0.0000, 5.0000, 5.0000]], dtype=float32, loc=gpu:0, shape=(5, 5))