DimensionSize

class nvtripy.DimensionSize(data: int, name: str | None = None)[source]

Bases: Tensor

A 0D, int32 tensor that represents a scalar value extracted from the shape of a tensor.

Parameters:
  • data (int) – The value of the DimensionSize, which should be a scalar integer.

  • name (str | None) – An optional name.

eval() Tensor[source]

Immediately evaluates this tensor. By default, tensors are evaluated lazily.

Note that an evaluated tensor will always reside in device memory.

Returns:

The evaluated tensor.

Return type:

Tensor

Example
 1import time
 2
 3start = time.perf_counter()
 4tensor = tp.ones((3, 3))
 5init_time = time.perf_counter()
 6tensor.eval()
 7eval_time = time.perf_counter()
 8
 9print(f"Tensor init_time took: {(init_time - start)  * 1000.0:.3f} ms")
10print(f"Tensor evaluation took: {(eval_time - init_time)  * 1000.0:.3f} ms")
Local Variables
>>> tensor
tensor(
    [[1, 1, 1],
     [1, 1, 1],
     [1, 1, 1]], 
    dtype=float32, loc=gpu:0, shape=(3, 3))
Output
Tensor init_time took: 9.500 ms
Tensor evaluation took: 3957.263 ms
tolist() List | Number

Returns the tensor as a nested list. If the tensor is a scalar, returns a python number.

Returns:

The tensor represented as a nested list or a python number.

Return type:

List | Number

Example: Ranked tensor
1tensor = tp.ones((2, 2))
2tensor_list = tensor.tolist()
Local Variables
>>> tensor_list
[[1.0, 1.0], [1.0, 1.0]]
Example: Scalar
1tensor = tp.Tensor(2.0, dtype=tp.float32)
2tensor_scalar = tensor.tolist()
Local Variables
>>> tensor_scalar
2.0