GroupNorm¶
- class nvtripy.GroupNorm(num_groups: int, num_channels: int, dtype: dtype = float32, eps: float = 1e-05)[source]¶
Bases:
Module
Applies group normalization over the input tensor:
\(\text{GroupNorm}(x) = \Large \frac{x - \bar{x}}{ \sqrt{\sigma^2 + \epsilon}} \normalsize * \gamma + \beta\)
where \(\bar{x}\) is the mean and \(\sigma^2\) is the variance.
- Parameters:
num_groups (int) – The number of groups to split the channels into.
num_channels (int) – The number of channels expected in the input.
dtype (dtype) – The data type to use for the weight and bias parameters.
eps (float) – \(\epsilon\) value to prevent division by zero.
Example
1group_norm = tp.GroupNorm(2, 2) 2 3group_norm.weight = tp.iota(group_norm.weight.shape) 4group_norm.bias = tp.iota(group_norm.bias.shape) 5 6input = tp.iota((1, 2, 2, 2), dim=1) 7output = group_norm(input)
Local Variables¶>>> group_norm GroupNorm( weight: Parameter = (shape=(2,), dtype=float32), bias: Parameter = (shape=(2,), dtype=float32), ) >>> group_norm.state_dict() { weight: tensor([0, 1], dtype=float32, loc=gpu:0, shape=(2,)), bias: tensor([0, 1], dtype=float32, loc=gpu:0, shape=(2,)), } >>> input tensor( [[[[0, 0], [0, 0]], [[1, 1], [1, 1]]]], dtype=float32, loc=gpu:0, shape=(1, 2, 2, 2)) >>> output tensor( [[[[0, 0], [0, 0]], [[1, 1], [1, 1]]]], dtype=float32, loc=gpu:0, shape=(1, 2, 2, 2))
- __call__(*args: Any, **kwargs: Any) Any ¶
Calls the module with the specified arguments.
- Parameters:
*args (Any) – Positional arguments to the module.
**kwargs (Any) – Keyword arguments to the module.
- Returns:
The outputs computed by the module.
- Return type:
Any
Example
1class Module(tp.Module): 2 def forward(self, x): 3 return tp.relu(x) 4 5 6module = Module() 7 8input = tp.arange(-3, 3) 9out = module(input) # Note that we do not call `forward` directly.
Local Variables¶>>> module Module( ) >>> module.state_dict() {} >>> input tensor([-3, -2, -1, 0, 1, 2], dtype=float32, loc=gpu:0, shape=(6,)) >>> out tensor([0, 0, 0, 0, 1, 2], dtype=float32, loc=gpu:0, shape=(6,))
- load_state_dict(state_dict: Dict[str, Tensor], strict: bool = True) Tuple[Set[str], Set[str]] ¶
Loads parameters from the provided
state_dict
into the current module. This will recurse over any nested child modules.- Parameters:
- Returns:
missing_keys: keys that are expected by this module but not provided in
state_dict
.unexpected_keys: keys that are not expected by this module but provided in
state_dict
.
- Return type:
A
tuple
of twoset
s of strings representing
Example
1class MyModule(tp.Module): 2 def __init__(self): 3 super().__init__() 4 self.param = tp.ones((2,), dtype=tp.float32) 5 6 7module = MyModule() 8 9print(f"Before: {module.param}") 10 11module.load_state_dict({"param": tp.zeros((2,), dtype=tp.float32)}) 12 13print(f"After: {module.param}")
Output¶Before: tensor([1, 1], dtype=float32, loc=gpu:0, shape=(2,)) After: tensor([0, 0], dtype=float32, loc=gpu:0, shape=(2,))
See also
- named_children() Iterator[Tuple[str, Module]] ¶
Returns an iterator over immediate children of this module, yielding tuples containing the name of the child module and the child module itself.
- Returns:
An iterator over tuples containing the name of the child module and the child module itself.
- Return type:
Iterator[Tuple[str, Module]]
Example
1class StackedLinear(tp.Module): 2 def __init__(self): 3 super().__init__() 4 self.linear1 = tp.Linear(2, 2) 5 self.linear2 = tp.Linear(2, 2) 6 7 8stacked_linear = StackedLinear() 9 10for name, module in stacked_linear.named_children(): 11 print(f"{name}: {type(module).__name__}")
Output¶linear1: Linear linear2: Linear
- named_parameters() Iterator[Tuple[str, Tensor]] ¶
- Returns:
An iterator over tuples containing the name of a parameter and the parameter itself.
- Return type:
Iterator[Tuple[str, Tensor]]
Example
1class MyModule(tp.Module): 2 def __init__(self): 3 super().__init__() 4 self.alpha = tp.Tensor(1) 5 self.beta = tp.Tensor(2) 6 7 8linear = MyModule() 9 10for name, parameter in linear.named_parameters(): 11 print(f"{name}: {parameter}")
Output¶alpha: tensor(1, dtype=int32, loc=cpu:0, shape=()) beta: tensor(2, dtype=int32, loc=cpu:0, shape=())
- state_dict() Dict[str, Tensor] ¶
Returns a dictionary mapping names to parameters in the module. This will recurse over any nested child modules.
- Returns:
A dictionary mapping names to parameters.
- Return type:
Dict[str, Tensor]
Example
1class MyModule(tp.Module): 2 def __init__(self): 3 super().__init__() 4 self.param = tp.ones((2,), dtype=tp.float32) 5 self.linear1 = tp.Linear(2, 2) 6 self.linear2 = tp.Linear(2, 2) 7 8 9module = MyModule() 10 11state_dict = module.state_dict()
Local Variables¶>>> state_dict { param: tensor([1, 1], dtype=float32, loc=gpu:0, shape=(2,)), linear1.weight: <nvtripy.frontend.module.parameter.DefaultParameter object at 0x79774be1c0d0>, linear1.bias: <nvtripy.frontend.module.parameter.DefaultParameter object at 0x79774be21400>, linear2.weight: <nvtripy.frontend.module.parameter.DefaultParameter object at 0x79774bdc0340>, linear2.bias: <nvtripy.frontend.module.parameter.DefaultParameter object at 0x79774bdc03d0>, }
- num_groups: int¶
The number of groups to split the channels into.
- num_channels: int¶
The number of channels expected in the input.
- eps: float¶
A value added to the denominator to prevent division by zero. Defaults to 1e-5.