earth2studio.models.px.Aurora#

class earth2studio.models.px.Aurora(core_model, z, slt, lsm)[source]#

Aurora 0.25 degree global forecast model. This model consists of single auto-regressive model with a time-step size of 6 hours. This model operates on 0.25 degree lat-lon grid (720, 1440) equirectangular grid with 4 surface-level variables, 5 atmospheric variables with 13 pressure levels and 3 static variables.

Note

This model uses the checkpoints from the original publication. For additional information see the following resources:

Warning

We encourage users to familiarize themselves with the license restrictions of this model’s checkpoints.

Parameters:
  • core_model (torch.nn.Module) – Core Aurora model

  • z (torch.Tensor) – Geopotential

  • slt (torch.Tensor) – Soil type

  • lsm (torch.Tensor) – Land sea mask

__call__(x, coords)[source]#

Runs prognostic model 1 step.

Parameters:
  • x (torch.Tensor) – Input tensor

  • coords (CoordSystem) – Input coordinate system

Returns:

Output tensor and coordinate system 6 hours in the future

Return type:

tuple[torch.Tensor, CoordSystem]

create_iterator(x, coords)[source]#

Creates a iterator which can be used to perform time-integration of the prognostic model. Will return the initial condition first (0th step).

Parameters:
  • x (torch.Tensor) – Input tensor

  • coords (CoordSystem) – Input coordinate system

Yields:

Iterator[tuple[torch.Tensor, CoordSystem]] – Iterator that generates time-steps of the prognostic model container the output data tensor and coordinate system dictionary.

Return type:

Iterator[tuple[Tensor, OrderedDict[str, ndarray]]]

classmethod load_default_package()[source]#

Load prognostic package

Return type:

Package

classmethod load_model(package)[source]#

Load prognostic from package

Parameters:

package (Package)

Return type:

PrognosticModel