earth2studio.models.px.FengWu#

class earth2studio.models.px.FengWu(ort, center, scale)[source]#

FengWu (operational) weather model consists of single auto-regressive model with a time-step size of 6 hours. FengWu operates on 0.25 degree lat-lon grid (south-pole including) equirectangular grid with 69 atmospheric/surface variables. This model uses two time-steps as an input.

Note

This model uses the ONNX checkpoint from the original publication repository. This checkpoint is a operational version to the one used in the paper which requires less variables. For additional information see the following resources:

Note

To avoid ONNX init session overhead of this model we recommend setting the default Pytorch device to the correct target prior to model construction.

Parameters:
  • ort (str) – Path to FengWu 6 hour onnx file

  • center (torch.Tensor) – Model variable center normalization tensor of size [69]

  • scale (torch.Tensor) – Model variable scale normalization tensor of size [69]

__call__(x, coords)[source]#

Runs 6 hour prognostic model 1 step.

Parameters:
  • x (torch.Tensor) – Input tensor

  • coords (CoordSystem) – Input coordinate system

Returns:

Output tensor and coordinate system 6 hours in the future

Return type:

tuple[torch.Tensor, CoordSystem]

create_iterator(x, coords)[source]#

Creates a iterator which can be used to perform time-integration of the prognostic model. Will return the initial condition first (0th step).

Parameters:
  • x (torch.Tensor) – Input tensor

  • coords (CoordSystem) – Input coordinate system

Yields:

Iterator[tuple[torch.Tensor, CoordSystem]] – Iterator that generates time-steps of the prognostic model container the output data tensor and coordinate system dictionary.

Return type:

Iterator[tuple[Tensor, OrderedDict[str, ndarray]]]

classmethod load_default_package()[source]#

Load prognostic package

Return type:

Package

classmethod load_model(package)[source]#

Load prognostic from package

Parameters:

package (Package)

Return type:

PrognosticModel