earth2studio.models.px.FCN#

class earth2studio.models.px.FCN(core_model, center, scale)[source]#

FourCastNet global prognostic model. Consists of a single model with a time-step size of 6 hours. FourCastNet operates on 0.25 degree lat-lon grid (south-pole excluding) equirectangular grid with 26 variables.

Note

This model is a retrained version on more atmospgeric variables from the FourCastNet paper. For additional information see the following resources:

Parameters:
  • core_model (torch.nn.Module) – Core PyTorch model with loaded weights

  • center (torch.Tensor) – Model center normalization tensor of size [26]

  • scale (torch.Tensor) – Model scale normalization tensor of size [26]

__call__(x, coords)[source]#

Runs prognostic model 1 step.

Parameters:
  • x (torch.Tensor) – Input tensor

  • coords (CoordSystem) – Input coordinate system

Returns:

Output tensor and coordinate system 6 hours in the future

Return type:

tuple[torch.Tensor, CoordSystem]

create_iterator(x, coords)[source]#

Creates a iterator which can be used to perform time-integration of the prognostic model. Will return the initial condition first (0th step).

Parameters:
  • x (torch.Tensor) – Input tensor

  • coords (CoordSystem) – Input coordinate system

Yields:

Iterator[tuple[torch.Tensor, CoordSystem]] – Iterator that generates time-steps of the prognostic model container the output data tensor and coordinate system dictionary.

Return type:

Iterator[tuple[Tensor, OrderedDict[str, ndarray]]]

classmethod load_default_package()[source]#

Load prognostic package

Return type:

Package

classmethod load_model(package)[source]#

Load prognostic from package

Parameters:

package (Package)

Return type:

PrognosticModel

Examples using earth2studio.models.px.FCN#

Running Deterministic Inference

Running Deterministic Inference

Running Diagnostic Inference

Running Diagnostic Inference

Running Ensemble Inference

Running Ensemble Inference

Extending Data Sources

Extending Data Sources