earth2studio.models.px.FuXi#

class earth2studio.models.px.FuXi(ort_short, ort_medium, ort_long)[source]#

FuXi weather model consists of three auto-regressive U-net transfomer models with a time-step size of 6 hours. The three models are trained to predict short (5days), medium (10 days) and longer (15 days) forecasts respectively. FuXi operates on 0.25 degree lat-lon grid (south-pole including) equirectangular grid with 70 atmospheric/surface variables. This model uses two time-steps as an input.

Note

This model uses the ONNX checkpoint from the original publication repository. For additional information see the following resources:

Note

To avoid ONNX init session overhead of this model we recommend setting the default Pytorch device to the correct target prior to model construction.

Parameters:
  • ort_short (str) – Path to FuXi short model onnx file

  • ort_medium (str) – Path to FuXi medium model onnx file

  • ort_long (str) – Path to FuXi long model onnx file

__call__(x, coords)[source]#

Runs short prognostic model 1 step.

Parameters:
  • x (torch.Tensor) – Input tensor

  • coords (CoordSystem) – Input coordinate system

Returns:

Output tensor and coordinate system 6 hours in the future

Return type:

tuple[torch.Tensor, CoordSystem]

create_iterator(x, coords)[source]#

Creates a iterator which can be used to perform time-integration of the prognostic model. Will return the initial condition first (0th step).

Parameters:
  • x (torch.Tensor) – Input tensor

  • coords (CoordSystem) – Input coordinate system

Yields:

Iterator[tuple[torch.Tensor, CoordSystem]] – Iterator that generates time-steps of the prognostic model container the output data tensor and coordinate system dictionary.

Return type:

Iterator[tuple[Tensor, OrderedDict[str, ndarray]]]

classmethod load_default_package()[source]#

Load prognostic package

Return type:

Package

classmethod load_model(package)[source]#

Load prognostic from package

Parameters:

package (Package)

Return type:

PrognosticModel