Source code for nvtripy.backend.api.input_info

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Tuple, Union

from nvtripy import export
from nvtripy.backend.api.named_dimension import NamedDimension
from nvtripy.backend.api.shape_bounds import ShapeBounds
from nvtripy.frontend.dimension_size import DimensionSize
from nvtripy.types import IntLike
from nvtripy.utils import json as json_utils


[docs] @export.public_api(document_under="compiling_code/input_info/index.rst") class InputInfo: """ Captures information about an input to a compiled function. """ def __init__( self, shape: Sequence[Union[NamedDimension, IntLike, Tuple[IntLike, IntLike, IntLike]]], dtype: "nvtripy.dtype", ) -> None: """ Args: shape: The shape of the input. To indicate dynamic dimensions, provide the minimum, optimum, and maximum values for the dimension. dtype: The data type of the input. .. code-block:: python :linenos: inp = tp.InputInfo((2, 4), dtype=tp.float32) assert inp.shape_bounds.min == (2, 4) assert inp.shape_bounds.opt == (2, 4) assert inp.shape_bounds.max == (2, 4) .. code-block:: python :linenos: :caption: Dynamic Dimensions # The first dimension will support values in the range [1, 3], # optimizing for a size of 2. inp = tp.InputInfo(((1, 2, 3), 4), dtype=tp.float32) assert inp.shape_bounds.min == (1, 4) assert inp.shape_bounds.opt == (2, 4) assert inp.shape_bounds.max == (3, 4) .. code-block:: python :linenos: :caption: Naming Dynamic Dimensions # Dimensions with the same name must be equal at runtime. # This knowledge can help the compiler optimize better. window_size = tp.NamedDimension("window_size", 3, 5, 7) inp = tp.InputInfo((1, window_size, window_size), dtype=tp.float32) assert inp.shape_bounds.min == (1, 3, 3) assert inp.shape_bounds.opt == (1, 5, 5) assert inp.shape_bounds.max == (1, 7, 7) assert inp.dimension_names == {1: "window_size", 2: "window_size"} """ is_int_like = lambda arg: any(isinstance(arg, typ) for typ in {int, DimensionSize}) # TODO (#252): Allow `shape` to be a shape tensor min_shape = [] opt_shape = [] max_shape = [] dimension_names = {} for idx, elem in enumerate(shape): if is_int_like(elem): elem = (elem,) * 3 if isinstance(elem, NamedDimension): dimension_names[idx] = elem.name elem = elem.bounds assert len(elem) == 3 and all(is_int_like(val) for val in elem) min_shape.append(elem[0]) opt_shape.append(elem[1]) max_shape.append(elem[2]) self.dimension_names: Dict[int, str] = dimension_names """ A mapping of dimension indices to their names, if set. """ self.shape_bounds: ShapeBounds = ShapeBounds(tuple(min_shape), tuple(opt_shape), tuple(max_shape)) """ The shape bounds of the input. """ self.dtype: "nvtripy.dtype" = dtype """ The data type of the input. """ def __str__(self) -> str: return f"InputInfo<{self.shape_bounds}, dimension names: {self.dimension_names}, dtype: {self.dtype}>" def __eq__(self, other): return isinstance(other, InputInfo) and self.shape_bounds == other.shape_bounds and self.dtype == other.dtype
@json_utils.Encoder.register(InputInfo) def encode_input_info(input_info): return { "shape_bounds": input_info.shape_bounds, "dimension_names": input_info.dimension_names, "dtype": input_info.dtype, } @json_utils.Decoder.register(InputInfo) def decode_input_info(input_info_dict): input_info = InputInfo(shape=[], dtype=input_info_dict["dtype"]) input_info.shape_bounds = input_info_dict["shape_bounds"] input_info.dimension_names = {int(k): v for k, v in input_info_dict.get("dimension_names", {}).items()} return input_info