Source code for nvtripy.frontend.module.batchnorm

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from dataclasses import dataclass

from nvtripy import export, utils
from nvtripy.common import datatype
from nvtripy.frontend.module.module import Module
from nvtripy.frontend.module.parameter import DefaultParameter
from nvtripy.frontend.tensor import Tensor


[docs] @export.public_api(document_under="operations/modules") @dataclass @utils.utils.constant_fields(["num_features"]) class BatchNorm(Module): r""" Applies batch normalization over an N-dimensional input tensor using precomputed statistics: :math:`y = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} * \gamma + \beta` where: - :math:`\mu` is the precomputed running mean. - :math:`\sigma^2` is the precomputed running variance. - :math:`\gamma` and :math:`\beta` are learnable parameter vectors (wieight and bias). This implementation supports 1D, 2D, and 3D inputs (e.g., time-series, images, and volumetric data). Batch Normalization normalizes across the specified feature dimension (typically the second dimension in the input). """ num_features: int r"""The number of feature channels in the input tensor (the size of the second dimension).""" dtype: datatype.dtype r"""The data type used to perform the operation.""" eps: float r""":math:`\epsilon` value added to the denominator to prevent division by zero during normalization.""" weight: Tensor r"""The :math:`\gamma` parameter of shape :math:`[\text{num_features}]`.""" bias: Tensor r"""The :math:`\beta` parameter of shape :math:`[\text{num_features}]`.""" running_mean: Tensor r"""The running mean for the feature channels of shape :math:`[\text{num_features}]`.""" running_var: Tensor r"""The running variance for the feature channels of shape :math:`[\text{num_features}]`.""" def __init__(self, num_features: int, dtype: datatype.dtype = datatype.float32, eps: float = 1e-5) -> None: r""" Args: num_features: The number of feature channels in the input tensor (the size of the second dimension). dtype: The data type to use for the weight, bias, running_mean and running_var parameters. eps: :math:`\epsilon` value added to the denominator to prevent division by zero during normalization. .. code-block:: python :linenos: batch_norm = tp.BatchNorm(2) input = tp.iota((1, 2, 1, 1)) output = batch_norm(input) """ super().__init__() self.num_features = num_features self.eps = eps # Initialize learnable parameters (scale and shift) self.weight = DefaultParameter((num_features,), dtype=dtype) self.bias = DefaultParameter((num_features,), dtype=dtype) # Initialize running statistics (precomputed, not updated) self.running_mean = DefaultParameter((num_features,), dtype=dtype) self.running_var = DefaultParameter((num_features,), dtype=dtype)
[docs] def __call__(self, x: "nvtripy.Tensor") -> "nvtripy.Tensor": r""" Args: x: The input tensor with shape :math:`(N, C, ...)`, where C is the feature dimension. Returns: A tensor of the same shape as the input. """ from nvtripy.frontend.trace.ops.unary_elementwise import rsqrt from nvtripy.frontend.trace.ops.reshape import reshape x_shape = (1, self.num_features, *([1] * (x.rank - 2))) # Use precomputed running mean and variance for normalization mean = reshape(self.running_mean, x_shape) var = reshape(self.running_var, x_shape) # Normalize the input x = (x - mean) * rsqrt(var + self.eps) # Apply the learned scaling (weight) and shifting (bias) weight = reshape(self.weight, x_shape) bias = reshape(self.bias, x_shape) return weight * x + bias