Source code for nvtripy.frontend.module.groupnorm

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from dataclasses import dataclass

from nvtripy import export, utils
from nvtripy.common import datatype
from nvtripy.common.exception import raise_error
from nvtripy.frontend.module.module import Module
from nvtripy.frontend.module.parameter import DefaultParameter
from nvtripy.frontend.tensor import Tensor


[docs] @export.public_api(document_under="operations/modules") @dataclass @utils.utils.constant_fields(["num_groups", "num_channels", "dtype"]) class GroupNorm(Module): r""" Applies group normalization over the input tensor: :math:`\text{GroupNorm}(x) = \Large \frac{x - \bar{x}}{ \sqrt{\sigma^2 + \epsilon}} \normalsize * \gamma + \beta` where :math:`\bar{x}` is the mean and :math:`\sigma^2` is the variance. """ num_groups: int r"""The number of groups to split the channels into.""" num_channels: int """The number of channels expected in the input.""" dtype: datatype.dtype r"""The data type used to perform the operation.""" weight: Tensor r"""The :math:`\gamma` parameter of shape :math:`[\text{num_channels}]`.""" bias: Tensor r"""The :math:`\beta` parameter of shape :math:`[\text{num_channels}]`.""" eps: float """A value added to the denominator to prevent division by zero. Defaults to 1e-5.""" def __init__( self, num_groups: int, num_channels: int, dtype: datatype.dtype = datatype.float32, eps: float = 1e-5 ) -> None: r""" Args: num_groups: The number of groups to split the channels into. num_channels: The number of channels expected in the input. dtype: The data type to use for the weight and bias parameters. eps: :math:`\epsilon` value to prevent division by zero. .. code-block:: python :linenos: group_norm = tp.GroupNorm(2, 4) group_norm.weight = tp.ones_like(group_norm.weight) group_norm.bias = tp.zeros_like(group_norm.bias) input = tp.iota((1, 4, 2, 2), dim=1) output = group_norm(input) np_out = cp.from_dlpack(output).get() # doc: omit assert np_out.shape == (1, 4, 2, 2) torch_tensor = torch.from_dlpack(input) # doc: omit torch_gn = torch.nn.GroupNorm(2, 4).to(torch.device("cuda")) # doc: omit torch_out = cp.from_dlpack(torch_gn(torch_tensor).detach()).get() # doc: omit assert np_out.shape == torch_out.shape # doc: omit assert np.allclose(np_out, torch_out) # doc: omit """ super().__init__() if num_channels % num_groups: raise_error( "Number of groups must divide number of channels evenly.", details=[f"Got {num_groups} groups but {num_channels} channels."], ) self.num_groups = num_groups self.num_channels = num_channels self.dtype = dtype # Replace with random weights when #74 is completed. self.weight = DefaultParameter((num_channels,), dtype=dtype) self.bias = DefaultParameter((num_channels,), dtype=dtype) self.eps = eps
[docs] def __call__(self, x: "nvtripy.Tensor") -> "nvtripy.Tensor": r""" Args: x: The input tensor. Returns: A tensor of the same shape as the input. """ from nvtripy.frontend.trace.ops.reduce import mean, var from nvtripy.frontend.trace.ops.reshape import reshape from nvtripy.frontend.trace.ops.unary_elementwise import rsqrt input_shape = x.shape x = reshape(x, (x.shape[0], self.num_groups, -1)) mean_val = mean(x, dim=-1, keepdim=True) var_val = var(x, dim=-1, keepdim=True, correction=0) + self.eps x = (x - mean_val) * rsqrt(var_val) x = reshape(x, input_shape) shape_to_broadcast = (1, self.num_channels) + (1,) * (x.rank - 2) return reshape(self.weight, shape_to_broadcast) * x + reshape(self.bias, shape_to_broadcast)