## SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#fromdataclassesimportdataclassfromnvtripyimportexport,utilsfromnvtripy.commonimportdatatypefromnvtripy.common.exceptionimportraise_errorfromnvtripy.frontend.module.moduleimportModulefromnvtripy.frontend.module.parameterimportDefaultParameterfromnvtripy.frontend.tensorimportTensor
[docs]@export.public_api(document_under="operations/modules")@dataclass@utils.utils.constant_fields(["num_groups","num_channels","dtype"])classGroupNorm(Module):r""" Applies group normalization over the input tensor: :math:`\text{GroupNorm}(x) = \Large \frac{x - \bar{x}}{ \sqrt{\sigma^2 + \epsilon}} \normalsize * \gamma + \beta` where :math:`\bar{x}` is the mean and :math:`\sigma^2` is the variance. """num_groups:intr"""The number of groups to split the channels into."""num_channels:int"""The number of channels expected in the input."""dtype:datatype.dtyper"""The data type used to perform the operation."""weight:Tensorr"""The :math:`\gamma` parameter of shape :math:`[\text{num_channels}]`."""bias:Tensorr"""The :math:`\beta` parameter of shape :math:`[\text{num_channels}]`."""eps:float"""A value added to the denominator to prevent division by zero. Defaults to 1e-5."""def__init__(self,num_groups:int,num_channels:int,dtype:datatype.dtype=datatype.float32,eps:float=1e-5)->None:r""" Args: num_groups: The number of groups to split the channels into. num_channels: The number of channels expected in the input. dtype: The data type to use for the weight and bias parameters. eps: :math:`\epsilon` value to prevent division by zero. .. code-block:: python :linenos: group_norm = tp.GroupNorm(2, 4) group_norm.weight = tp.ones_like(group_norm.weight) group_norm.bias = tp.zeros_like(group_norm.bias) input = tp.iota((1, 4, 2, 2), dim=1) output = group_norm(input) np_out = cp.from_dlpack(output).get() # doc: omit assert np_out.shape == (1, 4, 2, 2) torch_tensor = torch.from_dlpack(input) # doc: omit torch_gn = torch.nn.GroupNorm(2, 4).to(torch.device("cuda")) # doc: omit torch_out = cp.from_dlpack(torch_gn(torch_tensor).detach()).get() # doc: omit assert np_out.shape == torch_out.shape # doc: omit assert np.allclose(np_out, torch_out) # doc: omit """super().__init__()ifnum_channels%num_groups:raise_error("Number of groups must divide number of channels evenly.",details=[f"Got {num_groups} groups but {num_channels} channels."],)self.num_groups=num_groupsself.num_channels=num_channelsself.dtype=dtype# Replace with random weights when #74 is completed.self.weight=DefaultParameter((num_channels,),dtype=dtype)self.bias=DefaultParameter((num_channels,),dtype=dtype)self.eps=eps
[docs]def__call__(self,x:"nvtripy.Tensor")->"nvtripy.Tensor":r""" Args: x: The input tensor. Returns: A tensor of the same shape as the input. """fromnvtripy.frontend.trace.ops.reduceimportmean,varfromnvtripy.frontend.trace.ops.reshapeimportreshapefromnvtripy.frontend.trace.ops.unary_elementwiseimportrsqrtinput_shape=x.shapex=reshape(x,(x.shape[0],self.num_groups,-1))mean_val=mean(x,dim=-1,keepdim=True)var_val=var(x,dim=-1,keepdim=True,correction=0)+self.epsx=(x-mean_val)*rsqrt(var_val)x=reshape(x,input_shape)shape_to_broadcast=(1,self.num_channels)+(1,)*(x.rank-2)returnreshape(self.weight,shape_to_broadcast)*x+reshape(self.bias,shape_to_broadcast)