Source code for nvtripy.frontend.module.instancenorm

#
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from dataclasses import dataclass

from nvtripy import constants, export, utils
from nvtripy.common import datatype
from nvtripy.common.exception import raise_error
from nvtripy.frontend.module.module import Module
from nvtripy.frontend.module.parameter import DefaultParameter
from nvtripy.frontend.tensor import Tensor

from nvtripy.frontend.ops import utils as op_utils
from nvtripy.utils import wrappers
from nvtripy.trace.ops.instancenorm import InstanceNorm as InstanceNormOp


@wrappers.interface(
    dtype_constraints={"input": "T1", "weight": "T1", "bias": "T1", wrappers.RETURN_VALUE: "T1"},
    dtype_variables={"T1": ["float32", "float16", "bfloat16"]},
)
def instancenorm(
    input: "nvtripy.Tensor",
    weight: "nvtripy.Tensor",
    bias: "nvtripy.Tensor",
    num_channels: int,
    eps: float,
) -> "nvtripy.Tensor":

    input_rank = input.rank

    if input_rank < 3:
        raise_error(
            f"Input must have a rank of at least 3, but got input of rank: {input.rank}",
            details=[
                "Input is expected to have shape (N, C, D1, ...) where N is the batch size, C is the number of channels, and D1, ... are the spatial dimensions"
            ],
        )

    if input.trace_tensor.shape[1] != constants.DYNAMIC_DIM and input.trace_tensor.shape[1] != num_channels:
        raise_error(
            f"Expected {num_channels} channels in the input, but got {input.shape[1]} channels",
            details=[
                "The input channel dimension must match the number of channels specified to the InstanceNorm module."
            ],
        )

    # TensorRT expects weight & bias to have shape [1, C, 1, 1, ...]
    from nvtripy.frontend.ops.reshape import reshape

    broadcast_shape = (1, num_channels) + (1,) * (input_rank - 2)
    weight = reshape(weight, broadcast_shape)
    bias = reshape(bias, broadcast_shape)

    # The MLIR Graph may have dynamic dimensions, so we explicitly set static dimensions in the trace shape tensors
    weight.trace_tensor.shape = broadcast_shape
    bias.trace_tensor.shape = broadcast_shape
    input.trace_tensor.shape = input.trace_tensor.shape[:1] + (num_channels,) + input.trace_tensor.shape[2:]

    return op_utils.create_op(
        InstanceNormOp,
        [input, weight, bias],
        num_channels=num_channels,
        eps=eps,
    )


[docs] @export.public_api(document_under="operations/modules") @dataclass @utils.wrappers.constant_fields(["num_channels", "dtype", "eps"]) class InstanceNorm(Module): r""" Applies Instance Normalization over a mini-batch of inputs: :math:`\text{InstanceNorm}(x) = \Large \frac{x - \mu}{ \sqrt{\sigma^2 + \epsilon}} \normalsize * \gamma + \beta` where :math:`\mu` is the mean and :math:`\sigma^2` is the variance, computed per channel for each instance in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameters of shape (C). InstanceNorm is similar to LayerNorm, but statistics are computed per channel across spatial dimensions, whereas LayerNorm is computed across all dimensions of a sample. """ num_channels: int r"""Number of channels/features expected in the input.""" dtype: datatype.dtype r"""The data type used to perform the operation.""" weight: Tensor r"""The :math:`\gamma` parameter of shape (num_channels).""" bias: Tensor r"""The :math:`\beta` parameter of shape (num_channels).""" eps: float r"""A value added to the denominator for numerical stability.""" def __init__( self, num_channels: int, dtype: datatype.dtype = datatype.float32, eps: float = 1e-5, ) -> None: r""" Args: num_channels: Number of channels/features expected in the input dtype: The data type to use for the module parameters eps: The epsilon value added to the denominator for numerical stability .. code-block:: python :linenos: instance_norm = tp.InstanceNorm(3) instance_norm.weight = tp.ones((3,)) instance_norm.bias = tp.zeros((3,)) input_tensor = tp.ones((2, 3, 4, 4)) output = instance_norm(input_tensor) np_out = cp.from_dlpack(output).get() # doc: omit assert np_out.shape == (2, 3, 4, 4) torch_tensor = torch.from_dlpack(input_tensor) # doc: omit torch_in = torch.nn.InstanceNorm2d(3, affine=True) # doc: omit torch_in.weight.data = torch.from_dlpack(instance_norm.weight) # doc: omit torch_in.bias.data = torch.from_dlpack(instance_norm.bias) # doc: omit torch_output = torch_in(torch_tensor) # doc: omit assert np.allclose(np_out, torch_output.detach().cpu().numpy()) """ super().__init__() self.num_channels = num_channels self.dtype = dtype self.eps = eps self.weight = DefaultParameter((num_channels,), dtype=dtype) self.bias = DefaultParameter((num_channels,), dtype=dtype)
[docs] def forward(self, x: "nvtripy.Tensor") -> "nvtripy.Tensor": r""" Args: x: Input tensor of shape [N, C, ...] where C is the number of features Returns: Normalized tensor of the same shape as input """ return instancenorm(x, self.weight, self.bias, self.num_channels, self.eps)